

University of St Andrews 2021-22

Extending Nand2Tetris
CS5099: Dissertation in Computer Science

Student: Jamie Munro (210027910)
Supervisor: Tom Spink
Friday, 10 June 2022

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 1 of 107

Abstract
Modern CPUs are extremely complicated devices making use of a variety of clever optimisation

techniques. This project aims to provide an understanding of some of these optimisation techniques

by implementing them on a simple computer architecture. The hardware platform Hack presented

by Noam Nisan and Shimon Schocken in their 2005 textbook “The elements of computing systems”

(also known as Nand2Tetris) was selected. After providing an overview of Hack and of 5

optimisations: memory caching, pipelining, pipeline forwarding, branch target prediction and branch

outcome prediction, a simulator for the platform is developed. The simulator provides an elegant

mechanism for developing CPU optimisations and is used to collect data so that the performance

impact of each of the optimisations can be explored and compared. Data from 20,000 runs of the

simulator is analysed and presented graphically. The contribution of this project is to compare and

contrast some of the most important modern CPU optimisations.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 2 of 107

Dedication
For Spike, who spent many an hour watching me work on this project and others. You will be missed.

Acknowledgements
Many thanks to Noam Nisan and Shimon Schocken for their excellent book, I found it hugely

educational and interesting and it has changed my entire view of computers. Thanks to Shimon in

particular for his email providing advice and encouragement regarding this project. I have tried to

complete the book many times since I first acquired it over 10 years ago, eventually completing it

after being inspired by Tom Spink’s Computer Architecture course at University of St Andrews. Many

thanks to Tom for his outstanding course and all of his support, advice and expertise freely given

during this project. As always, many thanks to my wonderful girlfriend and family for all their

support and proof reading.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 3 of 107

Declaration
I (Jamie Munro) declare that the material submitted for assessment is my own work except where

credit is explicitly given to others by citation or acknowledgement. This work was performed during

the current academic year except where otherwise stated.

The main text of this project report is 14983 words long1, including project specification and plan.

In submitting this project report to the University of St Andrews, I (Jamie Munro) give permission for

it to be made available for use in accordance with the regulations of the University Library. I also give

permission for the title and abstract to be published and for copies of the report to

be made and supplied at cost to any bona fide library or research worker and to be made available

on the World Wide Web. I (Jamie Munro) retain the copyright in this work.

If there is a strong case for the protection of confidential data, the parts of the declaration giving

permission for its use and publication may be omitted by prior permission of the Director of

Postgraduate Teaching or Honours coordinator (as appropriate).

1 Main body of text, starting at introduction and finishing at conclusion, excluding captions and code excerpts.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 4 of 107

Table of Contents

Abstract ... 1

Dedication ... 2

Acknowledgements ... 2

Declaration .. 3

Table of Contents .. 4

List of Tables ... 7

List of Figures .. 8

Introduction .. 11

Context Survey .. 12

The Elements of Computing Systems ... 12

Hack Architecture ... 13

Optimisations .. 15

Benchmarks ... 17

SPEC CPU 2017 .. 18

SimBench... 18

Cycles per Instruction ... 19

Simulator ... 21

First-Generation Simulator ... 21

Second-Generation Simulator... 21

Third-Generation Simulator .. 22

Benchmarks ... 24

Seven ... 24

Pong .. 24

Staged Instructions (Base Model) ... 26

IF – Instruction Fetch .. 26

ID – Instruction Decode .. 26

EXE – Execute .. 26

A – A Instruction .. 26

OF – Operand Fetch .. 27

COMP – Compute.. 27

JMP – JUMP ... 27

WB – Write Back ... 27

Pipeline ... 28

Pipeline Forwarding .. 30

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 5 of 107

Simultaneous write back ... 30

Operand Forwarding ... 30

Memory Caches .. 31

Static Memory Cache .. 31

Direct Mapped Cache ... 31

N-Way Set Associative Cache .. 31

Fully Associative Cache ... 31

Eviction Policies ... 32

FIFO ... 32

LIFO ... 32

Least Recent .. 32

Most Recent .. 32

Branch Prediction .. 33

Branch Outcome Prediction .. 33

Never Taken .. 34

Always Taken .. 34

Global 1-bit predictor .. 34

Global 2-bit predictor .. 34

Local 1-bit predictor .. 35

Local 2-bit predictor .. 35

Gshare ... 35

Branch Target Prediction .. 35

1-bit target predictor .. 35

2-bit target predictor .. 36

Results ... 37

Methodology ... 37

Base configuration .. 37

Pipelines .. 38

Branch Prediction .. 41

Outcome Prediction .. 41

Target Prediction ... 46

Branch Prediction .. 55

Memory Caches .. 61

Select Configurations .. 68

Evaluation ... 72

Future Work .. 74

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 6 of 107

Conclusion ... 75

References .. 76

Appendix A: Links .. 77

Appendix B: Hardware Implementation ... 78

Primitive Logic Gates ... 78

Multi-bit Primitive Logic Gates ... 79

Multiplexer and Demultiplexers ... 80

Binary Arithmetic .. 83

Arithmetic Logic Unit (ALU) .. 84

Memory Chips ... 86

Memory Unit, ROM and Peripherals .. 90

Central Processing Unit (CPU) ... 91

Complete System .. 94

Appendix C: Software Implementation... 94

Assembler ... 95

Virtual Machine (VM) .. 96

Compiler .. 99

Operating System (OS) .. 101

Toolchain ... 102

Appendix D: Software optimisations .. 103

Replace Halt .. 103

Dead Code Elimination .. 103

Increments .. 103

Two Stage Increment .. 104

Loading 0 or 1 into A ... 104

Redundant A instructions ... 104

Results ... 104

Appendix E: Ethics Assessment Form ... 106

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 7 of 107

List of Tables
Table 1 Assembly mnemonics for the comp field. .. 14

Table 2 Assembly jump mnemonic along with effect. .. 14

Table 3 CPU optimisations summary. ... 16

Table 4 Comparison of CPI for a number of instructions across 3 different CPUs. 20

Table 5 13 micro synthetic benchmarks ... 24

Table 6 ALU operations based on Figure 2.6 of The Elements of Computing Systems [1]. 85

Table 7 Special keyboard codes taken from Figure 5.6 of The Elements of Computing Systems [1]. .. 91

Table 8 Instruction bit labels. .. 92

Table 9 Possible comp field values based on Figure 4.3 of The Elements of Computing Systems [1]. 92

Table 10 Possible jump field values based on Figure 4.5 of The Elements of Computing Systems [1].93

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 8 of 107

List of Figures
Figure 1 Project plan Gantt chart. ... 11

Figure 2 Summary of the Nand2Tetris course taken from Figure I.1 of The Elements of Computing

Systems [1]. ... 12

Figure 3 SPEC CPU 2017 Integer benchmarks taken from SPEC website [21]. 18

Figure 4 Benchmarks making up the SimBench suite taken from Figure 3 of Wagstaff et al. [17]. 19

Figure 5 Second-generation simulator configuration file. .. 22

Figure 6 Third-generation simulator configuration file. ... 23

Figure 7 Bar chart showing static instructions per benchmark .. 25

Figure 8 Instruction Stages.. 26

Figure 9 Contents of pipeline through the cycles ... 28

Figure 10 2-bit saturating counter .. 34

Figure 11 Simulator settings ... 37

Figure 12 Dynamic instructions per benchmark ... 38

Figure 13 Average CPI for base configuration .. 38

Figure 14 Average CPI comparison of pipeline configurations across all benchmarks 39

Figure 15 Average CPI comparison of pipeline configurations per benchmark 40

Figure 16 Improvement in average number of stalls after enabling operand forwarding 40

Figure 17 Improvement in number of stalls per benchmark after enabling operand forwarding 41

Figure 18 Average CPI comparison of outcome predictor types (across all target predictors) 42

Figure 19 Average outcome prediction accuracy (%) comparison of outcome predictor types 42

Figure 20 Average CPI comparison of outcome predictor size (across all target predictors) 43

Figure 21 Average outcome prediction accuracy (%) comparison of outcome predictor size 43

Figure 22 CPI comparison of outcome predictors (using fifo2bit256 target predictor) 44

Figure 23 Outcome prediction accuracy (%) comparison of outcome predictors 44

Figure 24 Average CPI comparison across 16-line outcome predictors (using fifo2bit256 target

predictor) .. 45

Figure 25 Average outcome prediction accuracy (%) comparison of 16-line outcome predictors 45

Figure 26 Average CPI comparison across 32-line outcome predictors (using fifo2bit256 target

predictor) .. 46

Figure 27 Average outcome prediction accuracy (%) comparison of 32-line outcome predictors 46

Figure 28 Average CPI comparison of target predictor type/eviction policy (across all sizes and

outcome predictors) ... 47

Figure 29 Average target predictor accuracy (%) comparison of target predictor type/eviction policy

(across all sizes and outcome predictors) ... 47

Figure 30 Average CPI comparison of target predictor types/sizes (across all eviction policies and

target predictors) .. 48

Figure 31 Average target predictor accuracy (%) of target predictor types/sizes (across all eviction

policies and target predictors) .. 48

Figure 32 Average CPI comparison of 16-line 1-bit target predictors (using gshare256 outcome

predictor) .. 49

Figure 33 Target prediction accuracy (%) comparison of 16-line 1-bit target predictors 50

Figure 34 Average CPI comparison of 16-line 2-bit target predictors (using gshare256 outcome

predictor) .. 50

Figure 35 Target prediction accuracy (%) comparison of 16-line 2-bit target predictors 51

Figure 36 Average CPI comparison of 32-line 1-bit target predictors (using gshare256 outcome

predictor) .. 51

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 9 of 107

Figure 37 Target prediction accuracy (%) comparison of 32-line 1-bit target predictors 52

Figure 38 Average CPI comparison of 32-line 2-bit target predictors (using gshare256 outcome

predictor) .. 52

Figure 39 Target prediction accuracy (%) comparison of 32-line 2-bit target predictors 53

Figure 40 Average CPI comparison of 16-line target predictors (using gshare256 outcome predictor)

 .. 54

Figure 41 Average target prediction accuracy (%) comparison of 16-line target predictors 54

Figure 42 CPI comparison of 32-line target predictors (using gshare256 outcome predictor) 55

Figure 43 Average target prediction accuracy (%) comparison of 32-line target predictors 55

Figure 44 Average CPI comparison of 16-line target/outcome predictors ... 56

Figure 45 Branch prediction accuracy (%) comparison of 16-line target/outcome predictors 56

Figure 46 Average CPI comparison for 32-line outcome/target predictors ... 57

Figure 47 Branch prediction accuracy (%) comparison for 32-line outcome/target predictors 57

Figure 48 Average CPI per benchmark comparison for various branch prediction configurations 58

Figure 49 Branch prediction accuracy (%) per benchmark comparison for various branch prediction

configurations ... 58

Figure 50 Relationship between average CPI and branch prediction accuracy (%) for various branch

prediction configurations .. 59

Figure 51 Number of flushes per benchmark comparison of various branch prediction configurations

 .. 60

Figure 52 Average number of flushes/half flushes comparison of various branch prediction

configurations ... 60

Figure 53 CPI comparison of cache types (across all sizes and policies)... 61

Figure 54 Cache hit rate (%) comparison of cache types (across all sizes and policies) 61

Figure 55 CPI comparison of eviction policy (across all types and sizes) .. 62

Figure 56 Cache hit rate (%) comparison of eviction policy (across all types and sizes) 62

Figure 57 CPI comparison of cache size .. 63

Figure 58 Cache hit rate (%) comparison of cache size .. 63

Figure 59 CPI comparison of 16-line caches ... 64

Figure 60 Cache hit rate (%) comparison of 16-line caches .. 64

Figure 61 CPI comparison of 32-line caches ... 65

Figure 62 Cache hit rate (%) comparison of 32-line caches .. 65

Figure 63 CPI comparison of 16-line caches ... 66

Figure 64 Cache hit rate (%) of 16-line caches .. 66

Figure 65 CPI comparison of 32-line caches ... 67

Figure 66 Cache hit rate (%) of 32-line caches .. 67

Figure 67 Average CPI comparison for select configurations across all benchmarks 68

Figure 68 CPI performance on each benchmark for configuration A ... 69

Figure 69 CPI performance on each benchmark for configuration B ... 69

Figure 70 CPI performance on each benchmark for configuration C ... 69

Figure 71 CPI performance on each benchmark for configuration D ... 70

Figure 72 CPI performance on each benchmark for configuration E ... 70

Figure 73 performance on each benchmark for configuration F .. 70

Figure 74 performance on each benchmark for configuration G ... 71

Figure 75 performance on each benchmark for configuration H ... 71

Figure 76 Deriving NOT gate from NAND gate. .. 78

Figure 77 Deriving AND gate from NAND gates. ... 78

Figure 78 Deriving OR gate from NAND gates .. 78

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 10 of 107

Figure 79 Deriving XOR gate from NAND gates .. 79

Figure 80 Deriving 8-way OR gate from OR gates. .. 79

Figure 81 Deriving 16-bit (bitwise) NOT gate from primitive NOT gates. ... 80

Figure 82 Deriving 16-bit (bitwise) NOT gate from primitive NOT gates. ... 80

Figure 83 Deriving multiplexer (MUX) from primitive logic gates. ... 81

Figure 84 Deriving demultiplexer (DMUX) from primitive logic gates. ... 81

Figure 85 Deriving 4-way demultiplexer from basic demultiplexers. ... 81

Figure 86 Deriving 8-way demultiplexer from 4-way demultiplexers. ... 82

Figure 87 Deriving 16-bit multiplexer from basic multiplexer. ... 82

Figure 88 Deriving 4-way 16-bit multiplexor from 16-bit multiplexers. ... 83

Figure 89 Deriving 8-way 16-bit multiplexer from 4-way 16-bit multiplexers. 83

Figure 90 Deriving full adder from primitive logic gates. ... 84

Figure 91 Deriving 16-bit full adder from basic full adders. ... 84

Figure 92 Implementation of Hack ALU from previously derived logic gates. 86

Figure 93 Bit implementation. .. 87

Figure 94 16-bit register chip implementation. .. 87

Figure 95 Implementation of the 8-byte RAM unit. ... 88

Figure 96 Generic implementation of RAM unit with 2^n registers. .. 88

Figure 97 16-kilobyte RAM unit implementation. .. 89

Figure 98 Program counter implementation. ... 90

Figure 99 Memory unit implementation. ... 90

Figure 100 Implementation of the Hack CPU. .. 94

Figure 101 Complete hardware implementation. .. 94

Figure 102 Multiplication program in Hack assembly. ... 96

Figure 103 Stack-based evaluation of (x < 7) or (y=8) assuming x=12 and y=8 taken from Figure 7.4 of

The Elements of Computing Systems [1]. ... 97

Figure 104 Diagram of global stack structure taken from Figure 8.4 of The Elements of Computing

Systems [1]. ... 98

Figure 105 Translating a C program to VM code taken from Figure 7.9 of The Elements of Computing

Systems [1]. ... 99

Figure 106 Hello World program in Jack taken from Figure 9.1 of The Elements of Computing

Systems [1]. ... 100

Figure 107 Example Jack program demonstrating procedural and array features taken from Figure

9.2 of The Elements of Computing Systems [1]. ... 100

Figure 108 Example Jack program showing object handling features taken from Figure 9.4 of The

Elements of Computing Systems [1]. .. 101

Figure 109 Static instructions per benchmark comparison between optimised and unoptimised code

 .. 105

Figure 110 Comparison of VM optimisation effect on average static instructions 105

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 11 of 107

Introduction

Figure 1 Project plan Gantt chart.

Modern CPU designers rely on a range of clever optimisation techniques to improve the

performance of their chips. This inclusion of so many optimisations on an already complex device

makes understanding modern CPUs and CPU optimisations a challenge. This project aims to present

a simple computer architecture and then implement some of the most important modern CPU

optimisations on the simple platform. Once this has been done, the performance impact of each of

the optimisations can be examined and compared.

The platform used in the project is called Hack and is a simple 16-bit Harvard architecture. Hack is

simple enough to be built and understood by students in a matter of weeks, but complex enough to

demonstrate the principles of modern computing systems. The optimisations that will be

implemented on the platform are: memory caching, pipelining, pipeline forwarding and branch

prediction.

As part of the project, a simulator for the platform will be developed. This simulator will provide an

elegant mechanism for optimising various areas of the CPU. The simulator will provide a means to

enable and disable each optimisation and set any related parameters. The simulator will also gather

a variety of performance statistics regarding each run.

The rest of this report begins with a context survey discussing background information related to the

project such as a detailed overview of the Hack platform, discussions on a number of optimisation

techniques, benchmarking and cycles per instruction. This is followed by a detailed description of the

simulator platform. Next, 15 benchmarks are defined to test the platform. After this, a more detailed

look at each of the optimisations explored by this project is taken. This is followed by a deep dive

into the results gathered by the project, explored through the use of data visualisation. An insightful

evaluation of this data is provided, before some ideas for future work are presented and the report

is concluded. This document includes 5 appendices. Appendix A provides links to the source code

referred to throughout this report, appendices B and C provide a more detailed exploration of the

hardware and software implementations of the Hack platform respectively, appendix D takes a brief

look at some possible software optimisations and finally appendix E deals with the ethics of this

project.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 12 of 107

Context Survey

The Elements of Computing Systems
The Elements of Computing Systems [1] is a 2005 textbook written by Noam Nisan and Shimon

Schocken. The authors assert that the complexity of modern computers and the segmented,

specialised approach of a modern computer science education, deprive the student of a bigger

picture understanding of how all of the hardware and software components of a computer system

fit together. The authors aim to remedy this by providing students with an opportunity to build a

computing system from first principles by gradually building a hardware platform and software

hierarchy, as illustrated by Figure 2.

Figure 2 Summary of the Nand2Tetris course taken from Figure I.1 of The Elements of Computing Systems [1].

The platform constructed during the book is called Hack. Hack is a simple 16-bit Harvard architecture

that can be built from elementary NAND gates and Data Flip-Flops. The instruction set is extremely

simple with a focus on hardware simplicity. Programs are supplied to the computer in the form of

replaceable ROM chips, similar to some cartridge-based games consoles. Despite this, the computer

is powerful and building it is an extremely informative journey.

For the rest of this report, “The Elements of Computing Systems” will be referred to simply as “the

book”.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 13 of 107

Hack Architecture
Hack is a simple 16-bit Harvard architecture designed to be simple enough to be built and

understood by students in a few weeks, but complex enough to demonstrate the inner workings of

modern computer systems.

The platform is equipped with 3 physical registers and 1 "virtual" register. Memory is divided into

program memory (ROM) and data memory (RAM). ROM can be read but not modified during

runtime whilst the system has full access to RAM. Both ROM and RAM are addressed via two

separate 15-bit address buses, meaning there are 32,678 possible locations in each unit. All 32,678

are available for ROM, giving a maximum program size of 32,678 instructions (although the

simulator includes a mode enabling significantly more instructions). However, only 24,575 of these

locations are available in RAM. Every memory location in both ROM and RAM, as well as each of the

registers, are 16-bit two's compliment binary numbers.

The first of the 3 physical registers is a special register called the Program Counter (PC). The PC

stores the address of the next instruction to be executed by the system. When execution of a new

instruction begins, the instruction at ROM[PC] is fetched and the program counter is incremented by

one. Programmers cannot directly manipulate the PC register, but it can be reset to 0 by asserting

the CPUs reset pin, or indirectly manipulated through the use of jump commands.

The remaining physical registers are called A and D. The D register is a general-purpose data register,

whilst the A register can be used as either a general-purpose data register, or as an address register.

The M register is a "virtual" register that always refers to the memory location RAM[A].

Programmers can manipulate arbitrary memory locations by first setting the A register to the

desired address and then reading or writing to the M register.

The RAM is divided up into two sections. The first section spans address 0 – 16,383, making it 16KB

in size. This section is general purpose RAM and its exact usage is defined by the software

implementation. The second section spans address 16,384 – 24,576 (8KB + 1 byte) and consists of

two memory maps. The Hack platform is equipped with a 256 (height) by 512 (width) monochrome

display. This screen is represented by the first memory map, which is 8KB in size and spans

addresses 16,384 – 24,575. Each of these addresses represents a 16-pixel row, where a pixel can be

illuminated by asserting the corresponding bit within the memory location. The pixel at row r (from

the top) and column c (from the left) is represented by the c%16 bit of the word found at

Screen[r*32+c/16]. The final address, 24,576, is a memory map representing the platform's

keyboard. When a key is pressed, the corresponding key code is written to this memory location.

The instructions for the Hack platform are divided into two types: A-instructions and C-instructions.

When written in assembly notation, A-instructions take the form:

 @constant

Where constant is a positive integer. A-instructions are used to load constants directly into the A

register. C-instructions take the form:

 dest=comp;jump

As can be seen from the above, each C-instruction contains the fields dest, comp and jump. The dest

and jump fields are optional, whilst the comp field is mandatory. This means that a C-instruction

could also take the form:

 dest=comp

Or:

 comp;jump

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 14 of 107

Or even:

 comp

Although this would not achieve anything and would be equivalent to a NOP (no operation).

The comp field instructs the ALU to compute a value which can be any of the mnemonics shown in

Table 1, where !, | and & represent the logical NOT, OR and AND operators respectively.

Table 1 Assembly mnemonics for the comp field.

The dest field instructs the CPU where to store the output of the ALU. This field is optional and can

be left blank, in which case the output will not be stored anywhere. If it is set, it can be any one or

combination of the A, D and M registers.

The jump field instructs the CPU which instruction to execute next. This field is optional and can be

left blank, in which case the CPU proceeds the next instruction as usual. If the field is set, it can hold

one of 7 values shown in Table 2.

Table 2 Assembly jump mnemonic along with effect.

Assembly mnemonic Effect

JMP Jump to ROM[A] unconditionally

JGT Jump to ROM[A] if out > 0

JEQ Jump to ROM[A] if out == 0

JGE Jump to ROM[A] if out >= 0

JLT Jump to ROM[A] if out < 0

JNE Jump to ROM[A] if out != 0

JLE Jump to ROM[A] if out <= 0

*Where out refers to the output of the ALU.

The software hierarchy of the Hack platform consists of five components: an assembler, a Virtual

Machine (VM) translator, a high-level language compiler, an operating system and finally a program.

The assembler, VM translator and compiler are all written in the Rust programming language, whilst

the operating system and programs are written in the Jack programming language.

The assembler performs the job of translating the assembly language described above into binary

machine code that the Hack platform can run directly. This is a trivial task, as each of the fields in a

C-instruction have one-to-one mappings to binary, whilst A-instructions simply involve expressing

the constant to be loaded as a 15-bit binary number. The task of the assembler is made slightly less

trivial due to its support for symbols. The Hack assembly language supports two types of symbols:

labels and variables. Labels are used to refer to another part of the program and are translated to

0 D !D -A D-1 D-A D|A -M D+M D&M

1 A !A D+1 A-1 A-D M M+1 D-M D|M

-1 !D -D A+1 D+A D&A !M M-1 M-D

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 15 of 107

program memory (ROM) addresses. The assembler relieves the programmer of the burden of

manually assigning and keeping track of which variables refer to which memory locations by

supporting variable symbols.

Whilst it is possible to compile directly from a high-level language (such as Jack) to assembly, today it

is more popular to first translate the high-level language into an intermediate language, then later

translate the intermediate language to assembly. This approach enables abstraction, reducing the

amount of work the compiler must do and also improves portability. The Hack platform specifies a

stack-based Virtual Machine (VM) that runs an intermediate language referred to as VM

language/code. The stack-based nature of the VM implementation provides an intuitive mechanism

for function calling and elegantly handles most of the memory management needs of the system.

Some VM implementations, such as the Java VM, act as an interpreter/runtime for the VM code.

This differs to the approach taken by this project as the VM translator program has the job of

translating VM code into assembly code that exhibits the same behaviour and the VM code simply

acts as an intermediate representation.

The compiler used in this project translates programs written in Jack into programs that can run on

the VM implementation described above. The Jack programming language is a simplistic, weakly-

typed, object-oriented, C-like language. Both the operating system and the programs that run on the

Hack platform are typically written in Jack, although there’s no reason a compiler for another

programming language couldn’t be implemented for the Hack platform. All of the benchmarks used

as part of this project have been written in Jack.

Modern Operating Systems (OS) are typically extremely complicated programs that must offer a

wide variety of services to programs running on top of them, whilst also managing the system’s

resources and enabling multiple programs (and possibly users) to run simultaneously and without

interfering with each other. Luckily the OS utilised in this project does not need to be as complex,

due in no small part to the fact that Hack platform is single-user and single-tasking. Our OS does not

even need to be capable of loading programs as all programs are supplied in the form of replaceable

ROM cartridges. In fact, the OS utilised by this project is more of a standard library for the Jack

programming language then it is an OS. This is the only part of the project that has not been

implemented (yet!) by the author. The OS used in this project is called Jack OS and is supplied with

the book.

For more information on the hardware or software platform, please see Appendix B: Hardware

Implementation or see Appendix C: Software Implementation respectively.

Optimisations
Hardware designers and CPU architects are in a constant race to build the fastest possible

processors. Whilst performance improvements can come from increasing clock speeds and reducing

the size of the underlying transistors, most performance improvements come from efficient design

and clever optimisations. Hardware manufacturers must compete to build the highest performance

chips at the lowest possible price and are therefore constantly looking for new ways to optimise

their designs. General purpose CPUs are exposed to a significant and varied volume of code, some of

which is badly written, which makes optimisations at a hardware level even more important. This is

partly because the hardware designers do not know ahead of time exactly what the CPU will be used

for and must be reasonably confident that the CPU will be able to handle its workload efficiently.

Even when the code being executed is well written, there is only so much that can be done through

software optimisations. Table 3 below summaries a number of optimisation techniques employed in

modern CPUs.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 16 of 107

Table 3 CPU optimisations summary.

Optimisation Description Resource(s)

Memory Caches Computers spend a lot of time waiting on memory and faster
memory is more expensive than slower memory. One
possible solution is to arrange memory into hierarchies with
the entire memory space available in largest, slowest memory
at the bottom and incrementally faster and smaller memory
stacked on top of it, each containing a subset of the memory
below it.

[2], [3], [11]

Pipelining Pipelining is an optimisation technique where instructions are
split into a number of smaller/simpler stages. Most modern
CPUs implement some variant of a pipeline. The “classic RISC
pipeline” splits each instruction into 5 stages: Instruction
Fetch, Instruction Decode, Execution, Memory Access,
Register Write Back. The use of this pipeline enables
Instruction Level Parallelism (ILP) by performing each of these
stages simultaneously on different instructions; i.e. whilst
Instructioni is in the WB-stage, Instructioni-1 is in the MEM-
stage, Instructioni-2 is in the EX-stage and so on. This can offer
performance improvements as it enables a degree of
instruction level parallelism and provides a foundation for
further optimisations such as branch prediction and pipeline
forwarding.

[5], [12]

Branch Prediction Whenever a conditional branch statement is encountered,
the CPU must determine the outcome of the branch before
execution can continue. This can waste valuable cycles.
Similarly, it may waste time determining the target of the
branch. Both of these challenges can be alleviated through
the use of prediction. These are actually two different tasks:
branch outcome prediction and branch target prediction.

[4], [13],
[14], [15]

Out-of-order
execution

Dynamic scheduling allows the CPU to rearrange the order of
instructions to reduce the amount of time the CPU spends
stalled, whilst maintaining the original data flow ordering.
Tomasulo’s Algorithm introduces the concept of register
renaming and tracks when operands become available.
Reservation Stations (RS) are used to facilitate the register
renaming. RSs store the instruction, operands as they become
available and the ID of other RSs which will provide the
operand values (if applicable). Register specifiers are renamed
within the RS to reduce data hazards. Instructions that store
to registers are executed in program order to maintain data
flow. Tomasulo’s Algorithm splits an instruction into three
stages:

1. Issue: Get next instruction from queue, if there is an
RS available, issue the instruction to the RS along
with any currently available operands. If no RS is
available, stall the instruction.

2. Execute: When operands become available, store
them in any RSs waiting for it. When all operands are
available, execute the instruction. Execution of store
instructions remains in program order.

[6], [16]

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 17 of 107

3. Write Result onto common data bus.

Speculative
Execution

Speculative execution is a technique where the CPU executes
instructions that may not be needed. This situation typically
arises when a CPU does not yet know the outcome of a
branch and begins speculatively executing a predicted
execution path. The results of the execution are only
committed if the prediction was correct. Committed in this
case means allowing an instruction to update the register file,
this should only happen when the instruction is no longer
speculative. This requires an additional piece of hardware
called the reorder buffer that holds the results of instructions
between execution completion and commit. If Tomasulo’s
Algorithm is also in use, then the source of operands is now
the reorder buffer instead of functional units. The reorder
buffer enables instructions to be completed out-of-order, but
makes the results visible in-order.

[7]

SIMD Single Instruction Multiple Data (SIMD) is an example of data-
level parallelism. SIMD makes use of vector registers and
vector functional units to make it possible to execute the
same instruction on multiple data items simultaneously.
Vector functional units have multiple lanes which means they
can perform many scalar operations simultaneously, one per
lane. The number of lanes available dictates the degree of
parallelism available.

[8]

Multiple Cores Multicore processors offer the ability to execute multiple
threads of execution simultaneously by physically duplicating
the CPU. This obviously enables the CPU to run more than
one program simultaneously, however performance
improvements within the same program are only possible if
the program is aware of and takes advantage of the
additional available core(s).

[9], [10]

Benchmarks
Benchmarks are used to enable comparison between CPUs by scoring their performance on a

standardized series of tasks [20]. Benchmarks are essential to evaluating the performance

improvement derived by implementing an optimisation. Benchmarks can be broadly divided into

two categories: synthetic and real-world. Synthetic benchmarks require the CPU to complete a series

of tasks that simulate a high-stress workload. Examples of synthetic benchmarks include:

• PassMark: runs heavy mathematical tasks that simulate workloads such as compression,

encryption and physics simulations

• 3DMark: measures the system ability to handle 3D graphics workloads

• PCMark: scores the system on how well it can deal with business workflows

Real-world benchmarks are carried out by giving real programs a heavy workload and then

measuring the amount of time taken to complete the task. Popular programs to run real-world

benchmarks on include:

• 7-Zip: measure the CPU’s compression and decompression performance

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 18 of 107

• Blender: measure the CPU’s 3D rendering speeds

• Handbrake: measure the CPU’s video encoding speed

Synthetic benchmarks typically nest a code snippet within a loop. Timing libraries are used to

measure the amount of time elapsed per iteration of the loop. The loop is run many times and

elapsed time averaged in order to control for outliers [19].

In addition to dividing benchmarks into synthetic and real-world categories, benchmarks can also be

divided into micro and macro benchmarks. All of the benchmarking techniques discussed so far have

been macro benchmarks. Macro benchmarks aim to test the performance of the entire CPU. In

contrast, micro benchmarks aim to test only a single component of the CPU. This can be useful when

evaluating the effect of parameters or strategies within a single component of the CPU.

SPEC CPU 2017
The Standard Performance Evaluation Corporation (SPEC) produce a number of benchmarking tools

targeting a number of different computing domains [21]. Their CPU package includes 43 benchmarks

based on real-world applications (such as the GCC compiler) and organised into 4 suites. The suites

are SPECspeed 2017 Integer, SPECspeed 2017 Floating Point, SPECrate 2017 Integer and SPECrate

2017 Floating Point. The SPECspeed suites compare the time taken for a computer to complete

single tasks, whilst the SPECrate suites measure throughput per unit of time. The Hack platform is

not equipped with floating point units and any support for fractional values would have to be

implemented in software, therefore only the integer benchmarks are of interest for this project. The

programs that make up the SPEC integer suites are shown in Figure 3. More information can be

found on the SPEC website [21] and the source code for each benchmark can be obtained by

purchasing a SPEC licence. Note that KLOC refers to the number of lines of source code divided by

1000.

Figure 3 SPEC CPU 2017 Integer benchmarks taken from SPEC website [21].

SimBench
SimBench is a benchmark suite specifically designed to test the performance of CPU simulators [17].

SimBench was proposed in 2017 by Wagstaff et al., after noting that more traditional benchmarking

suites such as SPEC are not able to identify specific bottlenecks in a computer architecture simulator.

18 benchmarks are included in the suite and these benchmarks are organised into five categories:

Code generation, Control Flow, Exception Handling, I/O and Memory System. Figure 4 shows the

benchmarks making up SimBench. Wagstaff et al. includes a detailed description of each of the

benchmarks and the source code is available from https://github.com/gensim-project/simbench.

https://github.com/gensim-project/simbench

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 19 of 107

Figure 4 Benchmarks making up the SimBench suite taken from Figure 3 of Wagstaff et al. [17].

Cycles per Instruction
Every instruction within a CPU’s instruction set will require a certain number of cycles to complete.

Different instructions may take a different number of cycles to complete. For example, an add

instruction may take 2 cycles whilst a divide instruction could take 20 cycles to complete. Memory

accesses typically take the most cycles to complete. The number of cycles it takes to complete a

given instruction is called Cycles per Instruction (CPI). Average CPI (across all instructions) is often

used as a performance metric as it describes the average number of cycles required to complete an

instruction. Since a cycle is effectively the CPUs base time unit, average CPI gives a good indication of

what latency can be expected for an instruction.

Table 4 shows the CPI for a number of common operations for the Intel 8086, Intel 10th Generation

Core and AMD Ryzen 3700. The timings for the Intel 8086 are taken from Liu et al. [22] whilst the

timings for Intel 10th Generation Core and AMD Ryzen 3700 are taken from A. Fog [23]. The

operations most relevant to the Hack platform have been selected. For purposes of simplicity the

following assumptions have been made:

• Operations can only be performed on register operands.

• Memory can only be accessed by explicitly loading a value into a register from memory and

explicitly saving a value from a register into memory (using MOV).

• If an instruction has multiple variants for different bit lengths, the native bit length will be

used. I.e., the DEC operation on the intel 8086 has an 8-bit and 16-bit variant, as the 8086 is

a 16-bit processor, the 16-bit variant will be used.

• Where indirect and direct addressing modes are available, direct addressing has been used.

Some of the values in the table are ranges, this is because the number of cycles required to

complete an instruction may be dependent on the architectural state of the system or the operands

supplied to the instruction. Factors may include whether a prediction was correct, state of the

memory cache or size of the operands.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 20 of 107

Table 4 Comparison of CPI for a number of instructions across 3 different CPUs.

Instruction Intel 8086 Intel 10th Gen. Core AMD Ryzen 3700

NEG 3 1 1

DEC, INC 2 1 1

ADD, SUB 3 1 1

CMP 3 1 1

MUL (unsigned) 118-133 3 3

IMUL (signed) 128-154 3 3

DIV (unsigned) 144-162 15 13-44

IDIV (signed) 165-184 15 13-44

NOT 3 1 1

AND, OR, XOR 3 1 1

JMP 15 n/a n/a

Conditional Jump (Taken) 16 n/a n/a

Conditional Jump (Not Taken) 4 n/a n/a

MOV (register -> register) 2 0-1 0

MOV (register -> memory) 15 2 0-3

MOV (memory -> register) 14 3 0-4

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 21 of 107

Simulator
The simulator is the centrepiece of this project as it enables a variety of optimisations to be

experimented with without requiring the physical construction of a new computing system. The

simulator developed in this project was programmed in the Rust programming language and

development involved iterating through 3 generations.

First-Generation Simulator
The first attempt at a simulator operated on unassembled Hack assembly programs instead of

directly on binaries. This meant that it had to also carry out some of the functions of an assembler,

such as maintaining a symbol table. This also meant that the simulator was carrying out a large

number of string comparisons.

The first-generation simulator emulated exactly 1 instruction per cycle. The screen and keyboard

peripherals were simulated using the Piston [24] rust library and this was done in the same thread as

the rest of the simulator. This resulted in a trade-off between screen/keyboard updates per second

and the speed of the rest of the simulator. At 15 updates per second, the simulator was able to

achieve a speed of 10,000 instructions per second.

Second-Generation Simulator
The second-generation simulator looked to address a number of shortcomings with the first-

generation simulator. Firstly, it operated directly on assembled binaries, which eliminated the

requirement for assembler functions such as the symbol table and also removed the need for any

string comparisons, significantly reducing overhead. The use of Piston for screen and keyboard

simulation was replaced by the Rust bindings for the SDL2 library [25]. More significantly, the screen

and keyboard peripheral simulation was moved into a separate thread, meaning that the updates

per second for these devices was independent of the instruction rate for the rest of the simulation.

These improvements enabled the simulator to achieve a significantly faster simulated clock speed of

5 million cycles per second at 144 peripheral updates per second.

During the development of the first-generation simulator, it was noticed that many of the programs

provided by the book and once built using the toolchain (described in Appendix C: Software

Implementation) were too large to fit into the 32K ROM chip. In order to combat this problem, a 32-

bit mode was added to the second-generation simulator. Whilst attempts will be made later in the

project to reduce the size of compiled binaries (Appendix D: Software optimisations), it would be a

fairly simple undertaking to convert the Hack platform to 32-bits, for the most part simply involving

replacing 16-bit registers with 32-bit registers and increasing the bus widths to 32-bits. A 32-bit Hack

platform also has the benefit of having more unused bits in its C-instruction which could enable the

addition of new instructions later in the project.

Another important improvement in the second-generation simulator was the addition of simulated

cycle delays for various operations such as imposing a 3-cycle delay for the ALU to compute an

output. These delays, along with a number of other parameters, could be configured in a file such as

the one shown in Figure 5. The parameters in the config section of file enable the user to specify the

path to the program ROM they wish to run, specify 16- or 32-bit mode, specify a target clock speed

(0 for unlimited), specify the number of frames/updates per second, specify a scale factor for the

screen, turn debug mode on or off (which results in debug messages being output to the display)

and turn halt detection on or off (which detects once the OS function halt is called and terminates

the simulation) respectively.
[config]

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 22 of 107

path = "bin/No_KBD_Fill.hack"

mode = 16

clock_speed = 0

fps = 144

scale_factor = 2

debug = false

halt = false

[schedule]

alu_delay = 3

read_mem_delay = 15

write_mem_delay = 14

unconditional_jmp_delay = 15

cond_jump_taken = 16

cond_jump_not_taken = 4

Figure 5 Second-generation simulator configuration file.

Third-Generation Simulator
The third-generation simulator is very similar to the second-generation simulator in terms of

performance and peripheral simulation. The key improvement for the third-generation simulator is

splitting the simulated CPU up into 8 modules:

• Control Unit: Responsible for scheduling instructions and conducting the remaining modules

• A-Instruction Unit: Responsible for loading the constant from an A-Instruction

• Memory Unit: Responsible for reads and writes to main memory

• Operand Unit: Responsible for retrieving the x and y operands for the comp field of a C-

instruction

• Arithmetic Logic Unit: Responsible for executing the comp field of a C-instruction

• Jump Unit: Responsible for executing the jump field of a C-instruction

• Write Back Unit: Responsible for saving values into the A, D and M registers and carrying out

the dest field of a C-instruction.

• Decode Unit: Responsible for decoding instructions prior to executing them.

Each module is represented by a trait (similar to an interface in other programming languages) which

must be replaced by a concrete implementation at runtime. This enables new optimisations to be

implemented simply by writing a trait implementation for the relevant module. For example, when

implementing a memory cache, only the Memory Unit would need to be rewritten, rather than

producing a completely new simulator as previous generations of the simulator would require.

The third-generation simulator also takes a configuration file to specify the various parameters of

simulation. The first section of the configuration file is similar to the second-generation

configuration file, only the section has been renamed parameters and there is an additional

parameter, peripherals, which can be used to turn the peripherals on or off. Instead of specifying a

schedule of delays as in the second-generation simulator, the third-generation simulator allows

users to specify which implementation for each of the 8 modules to use. An example of a third-

generation configuration file is shown in Figure 6.
[parameters]

path = “bin/Pong.hack"

mode = 32

clock_speed = 0

peripherals = true

fps = 144

scale_factor = 2

debug = false

halt = true

[components]

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 23 of 107

control_unit = "pipeline_forwarding"

a_instruction_unit = "basic"

memory_unit = "fully_associative_16_lrecent"

operand_unit = "forwarding"

arithmetic_logic_unit = "basic"

jump_unit = "basic"

write_back_unit = "simultaneous"

decode_unit = "gshare16_FIFO2bit16"

Figure 6 Third-generation simulator configuration file.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 24 of 107

Benchmarks
The performance of the base system and various configurations of optimisations will be evaluated

across a suite of benchmarks. The benchmark suite includes two “real-word” macro benchmarks

taken from the book and described in detail below. In addition to this, 13 micro “synthetic”

benchmarks were developed as part of this project and are described in Table 5.

Seven
Seven is one of the test programs supplied by the book. It is written in Jack and evaluates a simple

expression and then displays the answer on the screen. The program makes use of the full software

stack including some of the operating system routines. The assembled binary contains 41809

instructions. Along with testing the operating system boot procedure and a few of the standard

library functions, the Seven program tests some of the basic features of the Jack programming

language.

Pong
During initial testing of the simulators and to gain an idea of the improvement achieved by

implementing various optimisations, the Pong program supplied by the book was used. Although

this is an interactive game, the game will always end after the same number of cycles as long the

user does not supply any input. Under these conditions, the program is deterministic. The Pong

program is the most advanced program supplied by the book and uses most of the features of the

Jack programming language and OS. The assembled binary for the Pong program is 54065 static

instructions. Pong provides the closest to a real-world application that a user of a simple computer

like the Hack platform would be likely to encounter.

Table 5 13 micro synthetic benchmarks

Name Tests Instructions* Description

Array Fill Array handling 41958 Iterates over a 10,000-element array and set
each element to 1.

Boot Operating
System

41678 Simply boots the system, does nothing and exits.

Function Calls Function
handling

42763 Calls 7 different functions 10,000 times each.

Head Recursion Head
recursion

42148 Computes the 23rd term of the Fibonacci
sequence following a head-recursive procedure.

Long If If statement 43395 Evaluates a long (20 clause) if-else chain 10,000
times.

Loop While
statement

41809 Iterates over a 10,000 iteration while loop.

Mathematics Maths
operations

42374 Perform a long series of mathematical
operations during the course of 10,000 iteration
loop.

Memory Access Memory
operations

42158 Reads the first 2048 memory addresses (virtual
registers, static variables and the stack), then
writes to every memory address in the range
2048 – 24574 (heap and video memory) before
finally reading memory address 24575 (keyboard
memory map).

Memory Read Memory reads 41881 Reads every memory address in the RAM.

Memory Write Memory 41893 Writes to every memory address in the 2048 –

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 25 of 107

writes 24574, which includes the heap and video
memory.

Objects Object
handling

42683 Instantiate, call a member method and then
dispose of a class 100 times.

Output Output
performance

41970 Prints 100 ‘Z’ characters to the screen.

Tail Recursion Tail recursion 42100 Computes the 23rd term of the Fibonacci
sequence following a tail-recursive procedure.

*Static

Figure 7 Bar chart showing static instructions per benchmark

0

10000

20000

30000

40000

50000

60000

St
at

ic
 in

st
ru

ct
io

n
s

Benchmark

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 26 of 107

Staged Instructions (Base Model)
This section attempts to define a realistic schedule for how many cycles each instruction should take

to complete based on the timings of the Intel 8086 shown in Table 4. This is done by splitting each

single instruction into 4 stages and defining how many cycles each of these stages should take to

complete in various circumstances. Taken together, this forms the base model which the

optimisations in the remainder of this project attempt to improve upon.

The four stages are Instruction Fetch, Instruction Decode, Execute and Write Back. The execute stage

consists of 1 sub-stage in the case of an A-instruction, or 3 sub-stages in the case of a C-instruction

(Operand Fetch, Computation and Jump). These stages are loosely based on the classic RISC 5-stage

pipeline [26, 27], however cannot be considered a true “pipeline” yet, as only one instruction can

occupy the pipeline at any one time. This one instruction can only be in one of the 4 stages at any

given time and the remaining stages will be empty. When an instruction is executed, the control unit

orchestrates the execution of each of the stages sequentially by instructing the various modules

making up the CPU. Figure 8 summaries the various stages, note that A-instructions follow the top

route along the Execute stage, whilst C-instructions follow the bottom route. Each stage is described

in more detail in below. The system described in this section can be simulated by setting the

control_unit parameter to “staged”.

Figure 8 Instruction Stages

IF – Instruction Fetch
• Completes in 1 cycle

• Retrieves the next instruction from ROM

• Increments the PC by 1

ID – Instruction Decode
• Completes in 1 cycle

• Determine if A or C instruction

EXE – Execute
• Completes in 1 – 28 cycles

• A-instruction: 1 stage (A) completes in 1 cycle

• C-instruction: 3 stages (OF, COMP, JMP) completes in 4 – 28 cycles

A – A Instruction

• Completes in 1 cycle

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 27 of 107

• Loads constant from instruction

OF – Operand Fetch

• Completes in 1 – 14 cycles

• Available operands: A, D, M

• If comp field refers to M, load value from RAM[A] (14 cycles)

• If comp field refers to A and/or D, load value from A and/or D (1 cycle)

COMP – Compute

• Completes in 3 cycles

• ALU computes output based on operands and control inputs (instruction)

JMP – JUMP

• Completes in 0 – 10 cycles

• Optionally transfers control to another part of the program

• If jump field unset, completes in 0 cycles

• If jump field set:

o Unconditional Jump: Set PC to value in A register (4 cycles)

o Conditional Jump: Determine if jump should be taken based on ALU flags (6

cycles):

▪ Taken: Set PC to value in A register (4 cycles)

▪ Not taken: No further action (0 cycles)

WB – Write Back
• Completes in 0 – 15 cycles

• Optionally write ALU output to (any combination of) A, D, M

• If A-instruction, write to A

• If C-instruction, proceed based on dest field

• If dest field unset, completes in 0 cycles

• If dest field contains A and/or D, completes in 1 cycle

• If dest field contains M, writes to RAM[A] and completes in 15 cycles

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 28 of 107

Pipeline
As the reference to the RISC 5-stage pipeline may have suggested, the staged instruction approach

laid out in the previous section is positioned perfectly for a pipelined approach. Rather than waiting

for an instruction to pass through all 4 stages before repeating the process for the next instruction,

with only slight modifications, the system is able to process 4 instructions simultaneously, with one

in each stage. This will be the first hardware level optimisation proposed by this project and will

form the foundation for many of the other optimisations explored later in the project.

Under the pipeline approach, when instructioni is in the IF stage, instructioni-1 is in the ID stage,

instructioni-2 is in the EXE stage and instructioni-3 is in the WB stage. For a simplified pipeline, where

each stage takes exactly 1 cycle, this is shown in Figure 9.

Figure 9 Contents of pipeline through the cycles

All of the changes required to implement this pipelined approach can be implemented in the control

unit module. The pipelined control unit must orchestrate the various processing unit modules

making up the stages such that all four are (nearly) always busy. As well as tracking the contents of

the each of the stages control unit must take action to avoid two major hazards.

The first hazard occurs when a jump is taken. When an instruction causes a jump to happen, the

control unit is not aware of this until after the JMP sub-stage of the EXE stage, by which point it will

have already decoded and fetched the next two instructions directly following the instruction

causing the jump. Since a jump instruction transfers control to another part of the program, these

two instructions should not be executed. In this case, a pipeline flush or simply a flush occurs. During

a flush, the contents of the IF and ID stages are discarded and no further instruction is fetched until

the contents of the EXE and WB stage have completed. A flush should be triggered whenever an

unconditional or conditional jump that is taken occurs.

The second hazard occurs when an instruction reads from a register that an instruction in the EXE or

WB stage is simultaneously writing to. In this case, the decode stage must stall the pipeline until the

relevant instruction has completed the WB stage. When the pipeline is stalled, no further

instructions can enter the IF, ID or EXE stages, but instructions already in the EXE stage may

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 29 of 107

continue, whilst instructions are free to enter and execute the WB stage as usual. The decode stage

stalls the pipeline if it is decoding a C-instruction and the following conditions are met:

• If any instruction in pipeline is an A-instruction or a C-instruction writing to the A register

AND:

o Current instruction operates on A register OR

o Current instruction operates on M register OR

o Current instruction writes to M register

• If any instruction in pipeline is a C-instruction writing to the D register AND:

o Current instruction reads from D register

• If any instruction in the pipeline is a C-instruction writing to the M register AND:

o Current instruction reads from M register

The system described in this section can be simulated by setting the control_unit parameter to

“pipeline”.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 30 of 107

Pipeline Forwarding
Pipeline forwarding is an optimisation technique where earlier stages are able to take advantage of

information produced by later stages in order to gain a cycle advantage. Two pipeline forwarding

techniques are utilised in this project, which are discussed below. In order to take advantage of

these techniques, a new forwarding-enabled control unit is required. To enable the forwarding-

enabled control unit, set the control_unit parameter to “pipeline_forwarding”. Note that the

pipeline forwarding control unit is also capable of branch predictions.

Simultaneous write back
In the original pipeline model, the write back stage occurs after the jump sub-stage of the execute

stage has completed. The computation sub-stage of the execute stage determines the output, out of

the ALU. The jump stage sets the program counter based on out and the write back stage writes out

to any one (or none) of the 3 registers. Hopefully the reader can see that these two steps are

mutually independent – both require out to be ready, but do not modify it. For instructions that

contain possible branches, the simultaneous write back optimisation takes advantage of these facts

and performs both the jump sub-stage and the write back stage at the same time. Since both stages

have to potential to take a significant number of cycles, performing them simultaneously has the

potential to greatly increase instruction throughput. The write_back_unit parameter should be set to

“simultaneous” to employ this technique.

Operand Forwarding
In the original pipeline model, if the decode stage encounters any instructions which rely on

registers being modified by instructions in the execute or writeback stage, the pipeline is stalled until

the later instructions have completed. This is because the operand fetch sub-stage of the execute

stage cannot begin until all the registers it will access have been updated. The operand forwarding

technique attempts to alleviate this problem by allowing the operand unit to retrieve the updated

values for dependent registers directly from the write back unit, without waiting for it to finish

writing this data back to the relevant register. This has the potential to reduce the amount of time

the CPU spends stalled. Instructions are no longer stalled when dependent on an instruction in the

write back stage and instructions dependent on an instruction in the execute stage are only stalled

until that instruction enters the write back stage. However, this creates another problem – it is

possible for memory reads (by the operand unit) to occur at the same time as memory writes (by the

write back unit). This is alleviated by adding an additional memory unit, using one as a dedicated

writer and the other as a dedicated reader. This solution has the side effect of creating two

independent memory caches (if memory caching is enabled). The operand_unit parameter should be

set to “forwarding” to employ this technique.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 31 of 107

Memory Caches
Based on the figures presented in Table 4, main memory is very slow, taking 15 cycles to write a

value and 14 cycles to read a value. Therefore, the CPU would significantly benefit from having

access to a bank of faster memory. All the memory caches simulated in this project are able to

provide 1 cycle read/write access to any memory addresses that are “cached”.

Static Memory Cache
The static memory cache is the most basic memory cache explored in this project. The static

memory cache caches the first x memory locations of the main memory, where x is the size of the

cache. As the VM implementation frequently accesses data stored in the first 16 locations (e.g.

location 0 is the Stack Pointer), substantial performance improvements are on offer. The static

memory cache can be enabled by setting the memory_unit parameter to “static_x” where x is the

desired size of the static cache.

Direct Mapped Cache
Direct mapped caches are the simplest class of caches that are able to cache any memory location

within the main memory. Each memory location in the main memory is mapped to a single cache

line in the memory cache. The exact cache line index is found by looking at the last x bits of the

memory address, where x is log2 of the cache size. This index is determined by applying a bitwise

AND mask to the memory address. When an address is accessed, if the address is currently cached, it

can be accessed in a single cycle. If not, the access takes the standard number of cycles, but the

address is brought into the cache ready for future accesses. If the relevant cache line is already

occupied (capacity miss), the original occupant is evicted and replaced with the new address. The

direct mapped cache can be enabled by setting the memory_unit parameter to “direct_mapped_x”

where x is the desired size of the direct mapped cache.

N-Way Set Associative Cache
In a set associative cache, the cache is organised into sets, where each set contains a number of

cache lines. The set associative cache has two parameters, size and ways. The ways parameters

specifies the number of cache lines in each set. Therefore, the number of sets is determined by

dividing size by ways. For example, a 2-way 16 line set associative cache would have 8 sets. Each

memory location in main memory is mapped to a single set, however could occupy any of the lines

within that set. The set index is found by looking at the last x bits of the memory address, where x is

log2 of the number of sets, this is also determined using a bitwise AND mask. This organisation

increases the complexity of the cache, but reduces conflicts and therefore capacity misses. Much like

the direct mapped cache, when an address is accessed, if the address is currently cached, it can be

accessed in a single cycle. If not, the access takes the standard number of cycles, but the address is

brought into the cache ready for future accesses. If the relevant set has an unoccupied cache line,

the address is brought into that empty line. If, however, the set is already fully occupied, one of the

existing occupants is evicted and replaced by the new address. The cache line to be evicted is

determined by the cache eviction policy. Note that a direct mapped cache is a 1-way set associative

cache. The direct mapped cache can be enabled by setting the memory_unit parameter to

“n_way_set_associative_x_y” where x is the desired number of ways and y is the desired size of the

n-way set associative cache.

Fully Associative Cache
In a fully associative cache, any memory location can be cached in any cache line. This scheme offers

the most flexibility and therefore the least capacity misses, however is the most complex cache and

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 32 of 107

hence the most difficult/expensive to implement in hardware. In the real world, this additional

complexity usually comes at a cost – longer lookup time when compared with other caches. This

additional lookup time has not been considered in these simulations. As with the previous two

caches, when an address is accessed, if the address is currently cached, it can be accessed in a single

cycle. If not, the access takes the standard number of cycles, but the address is brought into the

cache ready for future accesses. If there is an unoccupied cache line anywhere within the cache, the

address is brought into that cache line. If not, one of the cache lines is evicted and the new address

is brought into that cache line. The cache line to be evicted is determined by the eviction policy.

Note that a fully associative cache is a special case of the n-way set associative cache, where n is

equal to the size of the cache. The fully associative cache can be enabled by setting the memory_unit

parameter to “fully_associative_x” where x is the desired size of the fully associative cache.

Eviction Policies
Eviction policies are used to determine which cache line should be evicted to make way for a newly

accessed memory location. These policies are employed by the N-way set associative cache to

determine which cache line within a set should be evicted, whilst they are employed by the fully

associative cache to decide which cache line within the entire cache should be evicted.

FIFO
When using the First In, First Out (FIFO) eviction policy, cache lines are organised into a queue in the

order they were brought into the cache. When a new address is cached, it is placed at the back of

the queue. When it is time to evict a cache line, the cache line that was occupied least recently and

is therefore at the front of the queue, is evicted.

LIFO
The Last In, First Out (LIFO) eviction policy is similar to the FIFO eviction policy in that cache lines are

still organised into a queue in the order they were brought into the cache. However, when it is time

to evict a cache line, the cache line that was occupied most recently and is therefore at the back of

the queue is select for eviction.

Least Recent
The least recent eviction policy also organises cache lines into a queue, however unlike the previous

two policies, the queue is ordered by when the cache line was last accessed rather than when it was

brought into the cache. This means that when accessing an address that has already been cached,

the cache line is moved to the back of the queue. When it is time to evict a cache line, the cache line

at the front of the queue is selected. This means the cache line that was accessed least recently is

evicted.

Most Recent
The most recent eviction policy is similar to the least recent eviction policy; however, it evicts the

most recently accessed cache line instead of the least. The cache lines are kept in a queue following

the same rules as the least recent policy, but evictions are made from the front of the queue instead

of the back.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 33 of 107

Branch Prediction
Under the standard pipeline model, the pipeline must be flushed every time a branch is taken. This is

because the fetch and decode stages will already contain instructions i+1 and i+2 when it should

contain instructions t and t+1, where i is the (program counter) address of the instruction containing

the jump and t is the target address of the branch. This situation arises because the fetch and

decode stages are unaware that there will be a jump in instruction i until the execute stage has

concluded for that instruction, by which time they will already have loaded the subsequent

instructions i+1 and i+2.

Branch prediction is an optimisation technique that attempts to alleviate this problem. During the

decode stage, the decode unit determines if an instruction contains a branch. If it does contain a

branch, the decode unit makes a prediction about the outcome of the branch (taken or not taken).

Unconditional jumps are always predicted to be taken.

If the jump is predicted not taken, then no further action is taken and the program proceeds to the

next instruction as normal.

If the jump is predicted to be taken, then the decode unit also makes a prediction about the target

of the jump. The program counter is then updated to the predicted target of the jump and a “half-

flush” is triggered. During a “half-flush” only the fetch unit is cleared. During the next cycle, the fetch

unit will fetch the next instruction from the predicted target address.

Once the execute stage concludes, the actual branch outcome and branch target are compared to

their predictions. If they are equal, then no further action is needed and a number of cycles are

saved. If the predictions were wrong, then a pipeline flush is triggered so that the correct

instructions can be retrieved. Therefore, the flush is avoided as long as both the outcome and target

prediction are correct.

Note that most modern architectures support both direct and indirect branches. In a direct branch,

the branch target is contained within the branch instruction. During an indirect branch, the branch

target is contained elsewhere, typically within a register. This means that branch target prediction is

only needed for indirect branches. However, the Hack architecture only supports indirect branching

– the branch target is always the value of the A register at the time the jump is taken. As a result, for

the Hack architecture, branch outcome prediction is only useful when employed in combination with

branch target prediction.

Branch prediction requires changes to both the control and decode units. The prediction-enabled

pipeline can be enabled by setting the control_unit parameter to “prediction_pipeline” in the

simulator configuration. There are a number of different outcome and target prediction strategies,

which are discussed below. These can be enabled by setting the decode_unit parameter to the

relevant strategy. However, as discussed previously, it is not useful to have an outcome predictor

without a target predictor, so both an outcome and target strategy should be specified. This can be

done by including both strategies within the decode_unit parameter, separated by an underscore,

e.g., “gshare16_fifo2bit16”.

Branch Outcome Prediction
A branch outcome predictor produces a prediction of either taken or not taken for a given

instruction address (prediction). After the branch is fully resolved, the predictor is told the actual

outcome of the branch so that it can make any relevant updates (confirmation).

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 34 of 107

Never Taken
This is the simplest prediction strategy and in fact is the behaviour already exhibited by the pipeline.

Branches are always assumed to be not taken and the instruction after the branch instruction is

loaded. The only benefit to this strategy over not using the prediction-enabled pipeline is that target

predictions will be made and acted upon in the case that the branch is unconditional if a target

predictor has been enabled. The never taken strategy ignores any confirmations it receives and is

therefore a static strategy. The decode_unit parameter should be set to “nevertaken” to employ this

strategy.

Always Taken
The always taken strategy predicts taken in all circumstances. Like the never taken strategy, it

ignores all confirmations and is therefore a static strategy. This strategy should be correct

approximately 50% of the time, however this will depend on the program being executed. If the

compiler is aware that the always taken strategy is in use, code can be reorganised to take

advantage of the fact that all branches will be assumed to be taken. The decode_unit parameter

should be set to “alwaystaken” to employ this strategy.

Global 1-bit predictor
The global 1-bit predictor is the first dynamic branch prediction strategy explored by this project.

This predictor simply predicts the same outcome as the last branch that was taken (regardless of

instruction address). This is done by storing the outcome of the last branch and returning when a

prediction is requested. This outcome is updated when receiving a confirmation. The decode_unit

parameter should be set to “global1bit” to employ this strategy.

Global 2-bit predictor
The global 2-bit predictor is a dynamic strategy similar to the global 1-bit predictor. This predictor

utilises a 2-bit saturating counter. This 2-bit counter capable of storing the values 0-4 (inclusive). If

the counter is 0 or 1, the predictor will predict not taken, whilst if the counter is 2 or 3, the

prediction is taken. When a confirmation is received, the counter is incremented if the branch was in

fact taken and decremented if it was not. This is illustrated in Figure 10. When compared to the 1-bit

prediction strategy, this has the benefit of making the prediction more stable by requiring two

mispredictions in a row in order to change the predicted outcome. The decode_unit parameter

should be set to “global2bit” to employ this strategy.

Figure 10 2-bit saturating counter

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 35 of 107

Local 1-bit predictor
The local 1-bit predictor is a dynamic strategy that holds a prediction table of a size specified by the

size parameter. Each (program memory) address is mapped to one of the cells in the table. The

specific table index is found by looking at the last x bits of the address where x is equal to log2 of the

table size and is determined using a bitwise AND mask. Each cell contains a boolean prediction,

equal to the outcome of the last branch instruction that had an address mapping to the same cell.

This outcome is updated when a confirmation is received. The decode_unit parameter should be set

to “local1bit[size]” to employ this strategy, where [size] should be replaced by the desired table size.

Local 2-bit predictor
The local 2-bit predictor is a dynamic strategy similar to the local 1-bit predictor strategy in that is

also holds a prediction table and each address is mapped to one of the cells in the table. However,

instead of storing a boolean outcome in the table, a 2-bit saturating counter is stored. This counter is

updated in the same way as the 2-bit global strategy. The decode_unit parameter should be set to

“local2bit[size]” to employ this strategy, where [size] should be replaced by the desired table size.

Gshare
Gshare or Global Sharing, is a dynamic strategy that attempts to combine the benefits of the global

and local predictors, by employing a hybrid approach enabling it to leveraging both global and local

information. Gshare also holds a prediction table of a size specified by the size parameter, when

each cell contains a 2-bit saturating counter. In addition to this, the gshare predictor maintains a

global history (shift) register (GHR). This register stores the outcomes of every branch in the form of

a binary number where each digit represents a taken (1) or not taken (0) outcome. When the

predictor receives a confirmation, it updates the GHR by shifting it one place to the right and then

setting the last bit to true if the outcome was taken and leaves it as false if not. The relevant 2-bit

counter in the prediction table is also updated. The index to the prediction table is found by XORing

the last x bits of the (program memory) address and the last x bits of the GHR, where x is log2 of the

size of the prediction table. The decode_unit parameter should be set to “gshare[size]” to employ

this strategy, where [size] should be replaced by the desired table size.

Branch Target Prediction
A branch outcome predictor produces a target address prediction for a given instruction address

(prediction). After the branch is fully resolved, the predictor is told the actual target address of the

branch so that it can make any relevant updates (confirmation).

1-bit target predictor
The 1-bit target predictor acts similarly to a memory cache. It maintains a target buffer of a size

specified by the size parameter. Each entry in the buffer contains an instruction address and the

target address of that instruction last time it was executed. When a confirmation is received, this

target address is updated. If a prediction is requested for an address that is not already in the cache,

a prediction of target address 0 is produced and the address is added to the buffer so that it is ready

for next time. In this way, the target buffer stores the last size branch instruction and their targets. If

a new address is added when the buffer is full, one of the existing entries is evicted according to the

selected eviction policy. The policies available are the same as the ones used by the set associative

and fully associative memory caches. The decode_unit parameter should be set to

“[eviction_policy]1bit[size]” to employ this strategy, where [eviction_policy] should be replaced by

the desired eviction policy (fifo, lifo, mostrecent or leastrecent) and [size] should be replaced by the

desired table size.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 36 of 107

2-bit target predictor
The 2-bit target predictor is similar to the 1-bit target predictor: it also maintains a target buffer of a

size specified by the size parameter, uses the same eviction strategies to make room once the buffer

is full and when a prediction is requested, the addresses is looked up in the cache and the respective

target address is produced, or 0 if the address does not appear in the target buffer. However, in

addition to storing the instruction address and target address in the buffer, a 2-bit counter is also

stored. When a confirmation is received, the counter is incremented by 1 if the predicted target was

correct and decremented by 1 if it was wrong. The stored target is only updated once the counter

reaches 0. When a target is updated, or a new entry added to the target buffer, the counter is

(re)initialised to 1. The decode_unit parameter should be set to “[eviction_policy]2bit[size]” to

employ this strategy, where [eviction_policy] should be replaced by the desired eviction policy and

[size] should be replaced by the desired table size.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 37 of 107

Results

Methodology
This section aims to use graphs and explanatory text to showcase, explore and compare the effects

of the optimisations discussed in this project. This has been done by statistically analysing

performance data generated during simulated runs of various different configurations. Each of the

configurations have a different combination of optimisations enabled.

Two python scripts were developed for the purposes of gathering data. The source code for both of

these scripts can be found in Appendix A: Links. The first script, generate_configs.py, is used to

generate batches of simulator configurations where each configuration is one permutation of the

possible CPU components paired with one of the benchmark programs. Each possible permutation

has one simulator configuration for each of the 15 benchmarks. The components included in these

permutations are specified as a parameter. The second script benchmarker.py is used to run an

arbitrary number of configurations on the simulator and collate all the results into a CSV file. The

script has the parameter batch size, which specifies how many simulations should be run

simultaneously.

Initially, it was intended to run simulations on every possible combination of CPU units. For

components that have a size parameter, the values used were 8, 16, 32, 64, 128 and 256. For the

ways parameter in n-way set associative memory caches, the values used were 2, 4, 8 and 16. This

resulted in 7.5 million different configurations, too many to simulate in a reasonable time frame.

Instead of running all 7.5 million simulations, around 18,000 simulations, organised into 4 sets, were

run. The first included every possible permutation of components, excluding the memory unit and

decode unit which were set to basic. This generated only 75 configurations which could be simulated

in a small amount of time. The second set included every possible permutation of memory unit with

every other component set to basic. This generated around 1,800 configurations and took

approximately 1 hour to simulate. The third set included every possible permutation of decode unit

with every other component set to basic. This generated around 16,000 configurations and took

approximately 10 hours to complete. The final set consisted of 8 manually selected configurations,

resulting in 120 configurations which also completed in a short period of time. Every simulation used

the same parameter settings with the obvious exception of the ROM path, as shown in Figure 11.

[parameters]

path = "[ROM_PATH]"

mode = 32

clock_speed = 0

peripherals = false

fps = 144

scale_factor = 2

debug = false

halt = true

Figure 11 Simulator settings

Base configuration
Before exploring any of the optimised configurations, it makes sense to take a look at the base

configuration and the benchmark programs in order to gain a frame of reference. Figure 12 shows

the number of dynamic instructions completed during the runtime of each of the benchmark

programs. None of the optimisations explored in this project reduce the number of instructions

completed by the CPU and so these numbers will hold for every optimised configuration. Figure 13

shows the CPI performance of the base configuration on each of the benchmarks. A lower CPI

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 38 of 107

indicates a better performance. The red line shows the average CPI performance across all of the

benchmarks. This then, approximately 14.5, is the number to beat.

Figure 12 Dynamic instructions per benchmark

Figure 13 Average CPI for base configuration

Pipelines
Figure 14 shows the average CPI across all 15 benchmarks for the base configuration, pipelined

configuration, pipeline w/ simultaneous writeback, pipeline w/ operand forwarding and pipeline w/

simultaneous writeback and operand forwarding. Simultaneous writeback and operand forwarding

are both pipeline forwarding techniques. We can see that enabling pipelining only offers a fairly

paltry 2.5% performance improvement. This is likely because the pipeline spends a significant

number of cycles stalled waiting for the execute or writeback stage to conclude. Both pipeline

forwarding techniques help to alleviate this. The simultaneous writeback technique enables the

jump sub-stage to occur at the same time as the writeback stage, effectively reducing the number of

cycles required to complete the execute stage for instructions that include a jump. Whilst this only

affects a relatively small number of instructions, this optimisation offers a further 5% performance

0 40000000 80000000 120000000 160000000

 array_fill.hack

 function_calls.hack

 long_if.hack

 mathematics.hack

 mem_read.hack

 objects.hack

 Pong.hack

 tail_recursion.hack

Instructions

B
en

ch
m

ar
k

13

13.5

14

14.5

15

15.5

16

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

Benchmark

 Average CPI for specific benchmark Average CPI across all benchmarks

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 39 of 107

improvement over the pipeline configuration and 8% improvement over the base configuration. The

operand forwarding technique directly reduces the number of stalls by eliminating the need to wait

for the writeback unit by enabling the operand fetch stage to retrieve operands directly from the

writeback unit. This would affect a larger number of instructions than the simultaneous writeback

optimisation and this results in a much larger performance improvement of 16% over the pipelined

configuration and 18% over the base configuration. Since these optimisations target different areas

of the CPU, they synergise well and enabling them both offers a 20% improvement over the

pipelined configuration and a 22% improvement over the base configuration. Figure 15 shows the

same information, but individually for each benchmark, rather than an average. Figure 16 shows the

improvement in the average number of stalls across all benchmarks after enabling operand

forwarding, whilst Figure 17 shows this for each benchmark individually. These graphs show that the

CPI performance improvement achieved when enabling operand forwarding is due to the substantial

reduction in the number of stalls.

Figure 14 Average CPI comparison of pipeline configurations across all benchmarks

0

2

4

6

8

10

12

14

16

Base Pipeline Simultaneous
Writeback

Operand Forwarding Operand Forwarding
+ Simultaneous

Writeback

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

 a
cr

o
ss

 a
ll

b
en

ch
m

ar
ks

Configuration

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 40 of 107

Figure 15 Average CPI comparison of pipeline configurations per benchmark

Figure 16 Improvement in average number of stalls after enabling operand forwarding

10

11

12

13

14

15

16
A

ve
ra

ge
 C

yc
le

s
p

er
 In

st
ru

ct
io

n

Benchmark

Base Pipeline

Simultaneous Writeback Operand Forwarding

Operand Forwarding + Simultaneous Writeback

0

5000000

10000000

15000000

20000000

25000000

Pipeline Operand Forwarding

A
ve

ra
ge

 n
u

m
b

er
 o

f
st

al
ls

 a
cr

o
ss

 a
ll

b
en

ch
m

ar
ks

Configuration

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 41 of 107

Figure 17 Improvement in number of stalls per benchmark after enabling operand forwarding

Branch Prediction

Outcome Prediction
Figure 18 shows the average CPI performance of all configurations utilising each of the 7 outcome

predictors. This data includes every target predictor and so may be somewhat skewed in the case

that an outcome prediction is correct but the target prediction is wrong. For predictors that have a

size parameter (local1bit, local2bit and gshare), this data also includes every size. Figure 19 shows

the same configurations, but considers outcome prediction accuracy instead of CPI. These two

graphs are highly and inversely correlated. A high prediction accuracy results in a lower CPI. Note the

y-axis scale on the CPI graph - none of these strategies are having a large influence on the overall

performance of the system.

Never taken is effectively the strategy taken by non-branch prediction-enabled pipelined

configurations and so even though never taken is correct in around 70% of cases, it only derives a

performance advantage when dealing with unconditional jumps. Conversely, the always taken

strategy would derive a performance improvement when both outcome and target are correctly

predicted, however due to the low accuracy of this predictor, it results in degraded performance.

Neither the global1bit or global2bit strategies are able to exhibit a performance improvement over

the (pipelined) nevertaken configuration suggesting that jumps in the benchmark programs are not

highly correlated globally. The local1bit, local2bit and gshare strategies all achieve similar

performance with the gshare strategy achieving a slightly lower performance and accuracy then the

local2bit predictor. This suggests that jumps in the branch programs are more locally correlated then

they are globally.

0

20000000

40000000

60000000

80000000

100000000

120000000
N

u
m

b
er

 o
f

st
al

ls

Benchmark

Pipeline Operand Forwarding

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 42 of 107

Figure 18 Average CPI comparison of outcome predictor types (across all target predictors)

Figure 19 Average outcome prediction accuracy (%) comparison of outcome predictor types

Figure 20 compares the performance of local1bit, local2bit and gshare, the highest performing

strategies, by size. Figure 21 shows the same configurations but compares prediction accuracy. Here,

we see a high correlation between outcome accuracy and predictor size. Unsurprisingly, larger

predictors exhibit a higher accuracy and better performance, although these types of predictors

would be more expensive. The graphs seem to show diminishing returns as size continues to

increase, with the most pronounced improvement between sizes 8 and 16.

14.09

14.1

14.11

14.12

14.13

14.14

14.15

nevertaken alwaystaken global1bit global2bit local1bit local2bit gshare

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

 a
cr

o
ss

 a
ll

b
en

ch
m

ar
ks

Outcome predictor

0

10

20

30

40

50

60

70

80

90

100

nevertaken alwaystaken global1bit global2bit local1bit local2bit gshare

A
ve

ra
ge

 o
u

tc
o

m
e

p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 (
%

)
ac

ro
ss

 a
ll

b
en

ch
m

ar
ks

Outcome predictor

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 43 of 107

Figure 20 Average CPI comparison of outcome predictor size (across all target predictors)

Figure 21 Average outcome prediction accuracy (%) comparison of outcome predictor size

Figure 22 and Figure 23 show the CPI performance and outcome accuracy respectively for 16-line

local1bit, local2bit and gshare strategies as well as the 4 unsized strategies for each benchmark

individually. In this case the target predictor is set to fifo2bit256, the most accurate target predictor,

to try to reduce the influence of the target predictor on these results. Here we can see once again

that the 3 sized strategies outclass the other strategies and once again local2bit consistently

outperforms the gshare strategy. The only exception to this is the Pong benchmark, perhaps

14.106

14.107

14.108

14.109

14.11

14.111

14.112

14.113

8 16 32 64 128 256

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

 a
cr

o
ss

 a
ll

b
en

ch
m

ar
ks

Outcome predictor size

82

84

86

88

90

92

94

96

8 16 32 64 128 256

A
ve

ra
ge

 o
u

tc
o

m
e

p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 (
%

)
ac

ro
ss

 a
ll

b
en

ch
m

ar
ks

Outcome predictor size

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 44 of 107

showing that real-world benchmarks are more globally correlated then the synthetic benchmarks

used in this project.

Figure 22 CPI comparison of outcome predictors (using fifo2bit256 target predictor)

Figure 23 Outcome prediction accuracy (%) comparison of outcome predictors

12.5

13

13.5

14

14.5

15

15.5

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

Benchmark

alwaystaken nevertaken global1bit global2bit local1bit16 local2bit16 gshare16

20

30

40

50

60

70

80

90

100

O
u

tc
o

m
e

p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 (
%

)

Benchmark

alwaystaken nevertaken global1bit global2bit local1bit16 local2bit16 gshare16

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 45 of 107

Figure 24 and Figure 25 are similar to the previous two graphs, but show averages across all of the

benchmarks. Meanwhile, Figure 26 and Figure 27 show the same information, but for 32-line sized

predictors. Here we can see that local1bit, local2bit and gshare remain the strongest predictors,

however the performance improvements from 16-line to 32-line are fairly negligible with only a

0.003% CPI and 0.6% accuracy improvement between the 16-line and 32-line local2bit strategies,

suggesting 16 may be a sweet spot.

Figure 24 Average CPI comparison across 16-line outcome predictors (using fifo2bit256 target predictor)

Figure 25 Average outcome prediction accuracy (%) comparison of 16-line outcome predictors

14.07

14.08

14.09

14.1

14.11

14.12

14.13

14.14

alwaystaken nevertaken global1bit global2bit local1bit16 local2bit16 gshare16

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

 a
cr

o
ss

 a
ll

b
en

ch
m

ar
ks

Outcome predictor

0

10

20

30

40

50

60

70

80

90

100

alwaystaken nevertaken global1bit global2bit local1bit16 local2bit16 gshare16

A
ve

ra
ge

 o
u

tc
o

m
e

p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 (
%

)
ac

ro
ss

 a
ll

b
en

ch
m

ar
ks

Outcome predictor

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 46 of 107

Figure 26 Average CPI comparison across 32-line outcome predictors (using fifo2bit256 target predictor)

Figure 27 Average outcome prediction accuracy (%) comparison of 32-line outcome predictors

Target Prediction
Figure 28 and Figure 29 compare the CPI performance and target prediction accuracy for each of the

2 types (1-bit and 2-bit) and the 4 eviction policies across all benchmarks. Here, we can see that CPI

performance and target prediction accuracy are highly and inversely correlated. We can also see

that the fifo and lrecent policies have similar performance to each other, as do the lifo and mrecent

14.07

14.08

14.09

14.1

14.11

14.12

14.13

14.14

alwaystaken nevertaken global1bit global2bit local1bit32 local2bit32 gshare32

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

 a
cr

o
ss

 a
ll

b
en

ch
m

ar
ks

Outcome predictor

0

10

20

30

40

50

60

70

80

90

100

alwaystaken nevertaken global1bit global2bit local1bit32 local2bit32 gshare32

A
ve

ra
ge

 o
u

tc
o

m
e

p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 (
%

)
ac

ro
ss

 a
ll

b
en

ch
m

ar
ks

Outcome predictor

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 47 of 107

strategies. This is likely because both fifo and lrecent look to evict less recently used items, whilst lifo

and mrecent evict more recently used items. Fifo and lrecent dramatically outperform lifo and

mrecent in terms of accuracy, although all the CPI scores are fairly similar indicating that branch

prediction does not have a major impact on CPI. The type of the predictor does not seem to have

much of an impact, with 2-bit predictors consistently outperforming 1-bit predictors, but not by

much. Therefore, the additional complexity of a 2-bit predictor may not be worthwhile.

Figure 28 Average CPI comparison of target predictor type/eviction policy (across all sizes and outcome predictors)

Figure 29 Average target predictor accuracy (%) comparison of target predictor type/eviction policy (across all sizes and
outcome predictors)

14.09

14.095

14.1

14.105

14.11

14.115

14.12

14.125

fifo lifo lrecent mrecent

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

 a
cr

o
ss

 a
ll

b
en

ch
m

ar
ks

Outcome predictor eviction policy

1-bit 2-bit

25

35

45

55

65

75

85

fifo lifo lrecent mrecentA
ve

ra
ge

 t
ar

ge
t

p
re

d
ic

to
r

ac
cu

ra
cy

 (
%

)
ac

ro
ss

 a
ll

b
en

ch
m

ar
ks

Outcome predictor eviction policy

1-bit 2-bit

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 48 of 107

Figure 30 and Figure 31 show the relationship between target predictor size and CPI or predictor

accuracy respectively. Unsurprisingly, larger target predictors offer better performance as they are

able to store information about more addresses without needing to make an eviction. The sweet

spot is not as clear this time, with the most notable performance improvements between 16 and 32

and between 128 and 256. The poor performance of the 8- and 16-line predictors suggests that

jumps from the same address are far apart from one another meaning that smaller predictors would

evict the address before it came up again. The relative stability between 32, 64 and 128 before a

much larger improvement at 256 suggests that 256 may be large enough to store most of branch

addresses encountered during the benchmarks. Once again, larger predictors are more expensive.

Figure 30 Average CPI comparison of target predictor types/sizes (across all eviction policies and target predictors)

Figure 31 Average target predictor accuracy (%) of target predictor types/sizes (across all eviction policies and target
predictors)

14.1

14.105

14.11

14.115

14.12

14.125

8 16 32 64 128 256

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

 a
cr

o
ss

 a
ll

b
en

ch
m

ar
ks

Target predictor size

1-bit 2-bit

30

40

50

60

70

80

90

8 16 32 64 128 256

A
ve

ra
ge

 t
ar

ge
t

p
re

d
ic

to
r

ac
cu

ra
cy

 (
%

)
ac

ro
ss

 a
ll

b
en

ch
m

ar
ks

Target predictor size

1-bit 2-bit

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 49 of 107

Figure 32 and Figure 33 compare the CPI performance and target prediction accuracy respectively of

each of the 16-line 1-bit target predictors across each benchmark individually. The outcome

predictor is set to gshare256, the highest accuracy outcome predictor encountered in this project.

This is to reduce the impact outcome mispredictions on CPI figures. Figure 34 and Figure 35 show

the same information for 16-line 2-bit target predictors, whilst Figure 36 and Figure 37 show this for

32-line 1-bit target predictors. Finally, Figure 38 and Figure 39 show this for 32-line 2-bit target

predictors.

Consistent with previous observations, the performance of 1-bit and 2-bit predictors is very similar,

potentially making the additional complexity of 2-bit predictors unwise. Also consistent with

previous observations, it is clear that the fifo and lrecent eviction policies dramatically outclass the

other 2 policies. When comparing 16-line and 32-line predictors, the 32-line predictors have much

better accuracy scores, particularly when looking at the lifo and mrecent eviction policies.

Figure 32 Average CPI comparison of 16-line 1-bit target predictors (using gshare256 outcome predictor)

12.5

13

13.5

14

14.5

15

15.5

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

Benchmark

fifo1bit16 lifo1bit16 mrecent1bit16 lrecent1bit16

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 50 of 107

Figure 33 Target prediction accuracy (%) comparison of 16-line 1-bit target predictors

Figure 34 Average CPI comparison of 16-line 2-bit target predictors (using gshare256 outcome predictor)

0

10

20

30

40

50

60

70

80

90

100
Ta

rg
et

 p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 (
%

)

Benchmark

fifo1bit16 lifo1bit16 mrecent1bit16 lrecent1bit16

12.5

13

13.5

14

14.5

15

15.5

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

Benchmark

fifo2bit16 lifo2bit16 mrecent2bit16 lrecent2bit16

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 51 of 107

Figure 35 Target prediction accuracy (%) comparison of 16-line 2-bit target predictors

Figure 36 Average CPI comparison of 32-line 1-bit target predictors (using gshare256 outcome predictor)

0

10

20

30

40

50

60

70

80

90

100
Ta

rg
et

 p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 (
%

)

Benchmark

fifo2bit16 lifo2bit16 mrecent2bit16 lrecent2bit16

12.5

13

13.5

14

14.5

15

15.5

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

Benchmark

fifo1bit32 lifo1bit32 mrecent1bit32 lrecent1bit32

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 52 of 107

Figure 37 Target prediction accuracy (%) comparison of 32-line 1-bit target predictors

Figure 38 Average CPI comparison of 32-line 2-bit target predictors (using gshare256 outcome predictor)

0

20

40

60

80

100

120
Ta

rg
et

 p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 (
%

)

Benchmark

fifo1bit32 lifo1bit32 mrecent1bit32 lrecent1bit32

12.5

13

13.5

14

14.5

15

15.5

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

Benchmark

fifo2bit32 lifo2bit32 mrecent2bit32 lrecent2bit32

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 53 of 107

Figure 39 Target prediction accuracy (%) comparison of 32-line 2-bit target predictors

Figure 40 and Figure 41 compare the average CPI and target prediction accuracy respectively of all

16-line target predictors (both 1-bit and 2-bit) across all benchmarks using the gshare256 outcome

predictor. Figure 42 and Figure 43 show the same information for 32-line target predictors. Once

again, the comparatively poor performance of the lifo and mrecent strategies are highlighted,

although performance does improve for the 32-line version. The fifo and lrecent policies

demonstrate similar performance again and since the lrecent strategy is more complex, it is likely

not worth the additional expense. The same argument can be made for 1-bit predictors over 2-bit

models, the performance gain may not be large enough to worth the extra expense.

0

20

40

60

80

100

120
Ta

rg
et

 p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 (
%

)

Benchmark

fifo2bit32 lifo2bit32 mrecent2bit32 lrecent2bit32

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 54 of 107

Figure 40 Average CPI comparison of 16-line target predictors (using gshare256 outcome predictor)

Figure 41 Average target prediction accuracy (%) comparison of 16-line target predictors

14.08

14.09

14.1

14.11

14.12

14.13

14.14
A

ve
ra

ge
 C

yc
le

s
p

er
 In

st
ru

ct
io

n
 (

C
P

I)
 a

cr
o

ss
 a

ll
b

en
ch

m
ar

ks

Target predictor

0

10

20

30

40

50

60

70

80

90

A
ve

ra
ge

 t
ar

ge
t

p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 (
%

)
ac

ro
ss

 a
ll

b
en

ch
m

ar
ks

Target predictor

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 55 of 107

Figure 42 CPI comparison of 32-line target predictors (using gshare256 outcome predictor)

Figure 43 Average target prediction accuracy (%) comparison of 32-line target predictors

Branch Prediction
With both the target and outcome components of branch prediction now explored in detail, it’s time

to take a look at branch prediction in general. Figure 44 and Figure 45 show the average CPI and

branch prediction accuracy respectively for each combination of 16-line target and outcome

predictors. Figure 46 and Figure 47 show the same information for 32-line target and outcome

predictors. These graphs do not include the lifo or mrecent target prediction eviction policies as the

poor performance of these policies excludes them from further consideration. Here we can see that

within a specified size, the selection of target predictor does not make much of a difference to the

14.08

14.085

14.09

14.095

14.1

14.105

14.11

14.115

14.12

14.125
A

ve
ra

ge
 C

yc
le

s
p

er
 In

st
ru

ct
io

n
 (

C
P

I)
 a

cr
o

ss
 a

ll
b

en
ch

m
ar

ks

Target Predictor

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 t
ar

ge
t

p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 (
%

)
ac

ro
ss

 a
ll

b
en

ch
m

ar
ks

Target predictor

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 56 of 107

performance, however the 32-line predictors do offer significantly improved accuracy scores. The

selection of outcome predictor has a larger influence on results and local2bit and gshare show

themselves to be the best outcome predictors once more.

Figure 44 Average CPI comparison of 16-line target/outcome predictors

Figure 45 Branch prediction accuracy (%) comparison of 16-line target/outcome predictors

14.08

14.09

14.1

14.11

14.12

14.13

14.14

14.15

nevertaken alwaystaken global1bit global2bit local1bit16 local2bit16 gshare16

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

 a
cr

o
ss

 a
ll

b
en

ch
m

ar
ks

Outcome predictor

fifo1bit16 fifo2bit16 lrecent1bit lrecent2bit

0

10

20

30

40

50

60

70

80

90

100

nevertaken alwaystaken global1bit global2bit local1bit16 local2bit16 gshare16

A
ve

ra
ge

 b
ra

n
ch

 p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 (
%

)
ac

ro
ss

 a
ll

b
en

ch
m

ar
ks

Outcome predictor

fifo1bit16 fifo2bit16 lrecent1bit lrecent2bit

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 57 of 107

Figure 46 Average CPI comparison for 32-line outcome/target predictors

Figure 47 Branch prediction accuracy (%) comparison for 32-line outcome/target predictors

Figure 48 and Figure 49 show the average CPI and branch prediction accuracy respectively of 4

configurations for each benchmark individually. The configurations are no predictor, always taken

with fifo2bit16, gshare16 with fifo2bit16 and gshare32 with fifo2bit32. Here, the two gshare-based

predictors show themselves to be the best option, with the 32-line variant offering a slight

performance edge over the 16-line variant. Previous observations suggested that there gshare32 did

14.07

14.08

14.09

14.1

14.11

14.12

14.13

14.14

nevertaken alwaystaken global1bit global2bit local1bit16 local2bit16 gshare16

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

 a
cr

o
ss

 a
ll

b
re

n
ch

m
ar

ks

Outcome predictor

fifo1bit16 fifo2bit16 lrecent1bit lrecent2bit

0

10

20

30

40

50

60

70

80

90

100

nevertaken alwaystaken global1bit global2bit local1bit16 local2bit16 gshare16

A
ve

ra
ge

 b
ra

n
ch

 p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 (
%

)
ac

ro
ss

 a
ll

b
en

ch
m

ar
ks

Outcome predictor

fifo1bit16 fifo2bit16 lrecent1bit lrecent2bit

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 58 of 107

not offer much of a performance advantage over gshare32 and so these gains are likely due to the

improvements offered by fifo2bit32 over fifo2bit16. Therefore, a hybrid approach of 16-line

outcome predictors and 32-line target predictors may be the way to go.

Figure 48 Average CPI per benchmark comparison for various branch prediction configurations

Figure 49 Branch prediction accuracy (%) per benchmark comparison for various branch prediction configurations

12.5

13

13.5

14

14.5

15

15.5

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

Benchmark

None alwaystaken_fifo2bit16 gshare16_fifo2bit16 gshare32_fifo2bit32

0

20

40

60

80

100

120

B
ra

n
ch

 p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 (
%

)

Benchmark

None alwaystaken_fifo2bit16 gshare16_fifo2bit16 gshare32_fifo2bit32

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 59 of 107

Figure 50 shows the relationship between branch prediction accuracy and average CPI performance

for the 4 branch prediction configurations discussed above. This graph clearly shows the high

negative correlation between branch prediction accuracy and CPI.

Figure 50 Relationship between average CPI and branch prediction accuracy (%) for various branch prediction
configurations

The reason that higher branch prediction accuracy leads to better CPI performance is that a

successful branch prediction replaces the need for a pipeline flush with a half-flush. Half-flushes only

affect the fetch unit and therefore do not impose as much of a cycle penalty. Figure 51 shows the

number of flushes per benchmark for each of the branch prediction configurations. This graph

clearly shows that there are less pipeline flushes for the branch prediction configurations that have

higher branch prediction accuracies and lower average CPI scores. Figure 52 shows the same

information but average over all of the benchmarks. It also shows the number of half-flushes.

0

10

20

30

40

50

60

70

80

90

100

14.07

14.08

14.09

14.1

14.11

14.12

14.13

14.14

14.15

A
ve

ra
ge

 b
rn

ac
h

 p
re

d
ic

ti
o

n
 a

ac
cu

ra
cy

 (
%

)
ac

ro
ss

 a
ll

b
en

ch
m

ar
ks

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

 a
cr

o
ss

 a
ll

b
en

ch
m

ar
ks

Configuration

CPI Branch prediction accuracy (%)

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 60 of 107

Figure 51 Number of flushes per benchmark comparison of various branch prediction configurations

Figure 52 Average number of flushes/half flushes comparison of various branch prediction configurations

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000
N

U
m

b
er

 o
f

fl
u

sh
es

Benchmark

None alwaystaken_fifo2bit16 gshare16_fifo2bit16 gshare32_fifo2bit32

0

100000

200000

300000

400000

500000

600000

700000

800000

None alwaystaken_fifo2bit16 gshare16_fifo2bit16 gshare32_fifo2bit32

N
u

m
b

er
 o

f
fl

u
sh

es
/h

al
f

fl
u

sh
es

Configuration

Flushes Half Flushes

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 61 of 107

Memory Caches
Figure 53 and Figure 54 show the Average CPI performance and cache hit rate respectively for each

of the cache types averaged across all sizes, eviction policies and benchmarks. Here we can see that

the use of any cache, even the lowest performing static cache, dramatically improves the CPI

performance of the system. This shows the memory performance is the biggest bottleneck of the

system. By comparing the CPI and hit rate graphs we can see that there is a strong negative

correlation between CPI and hit rate, which is unsurprising since memory caches only offer a

performance improvement when accessing cached addresses. Of the four memory caches shown in

this graph, direct mapped caches, fully associative caches and set associative caches all offer similar

performance, although the best performance is shown by the direct mapped cache. This is likely to

be misleading however, since fully associative and set associative caches make use of eviction

policies and a poor eviction policy could skew the results.

Figure 53 CPI comparison of cache types (across all sizes and policies)

Figure 54 Cache hit rate (%) comparison of cache types (across all sizes and policies)

Figure 55 and Figure 56 show the average CPI and cache hit rate respectively for each of the eviction

policies. These numbers are only for caches that require an eviction policy and are averaged across

0

2

4

6

8

10

12

14

16

None Static Direct Mapped Fully Associative Set Associative

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

in
o

n
 (

C
P

I)
 a

cr
o

ss
 a

ll
b

en
ch

m
ar

ks

Cache type

0

10

20

30

40

50

60

70

80

90

100

Static Direct Mapped Fully Associative Set Associative

A
ve

ra
ge

 c
ac

h
e

h
it

 r
at

e
(%

)
ac

ro
ss

 a
ll

b
en

ch
m

ar
ks

Cache type

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 62 of 107

all benchmarks and sizes. As before, average CPI and cache hit rate are strongly negatively

correlated. Just like the target predictors, fifo and lrecent offer the best performance, whilst lifo and

mrecent offer poorer performance. Both fifo and lrecent offer average hit rates approaching 100%.

Figure 55 CPI comparison of eviction policy (across all types and sizes)

Figure 56 Cache hit rate (%) comparison of eviction policy (across all types and sizes)

Figure 57 and Figure 58 plot the average CPI and cache hit rate respectively for each cache size

across all benchmarks, types and eviction policies. Again, the CPI and hit rate charts are strongly

0

1

2

3

4

5

6

7

8

LIFO FIFO Most Recent Least recent

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

 a
cr

o
ss

 a
ll

b
en

ch
m

ar
ks

Cache eviction policy

0

10

20

30

40

50

60

70

80

90

100

LIFO FIFO Most Recent Least recent

A
ve

ra
ge

 c
ac

h
e

h
it

 r
at

e
(%

)
ac

ro
ss

 a
ll

b
en

ch
m

ar
ks

Cache eviction policy

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 63 of 107

negatively correlated. Here we can see that the performance of the memory cache improves the

larger it is. This is because the cache is then able to hold a larger number of addresses.

Figure 57 CPI comparison of cache size

Figure 58 Cache hit rate (%) comparison of cache size

Figure 59 and Figure 60 show the average CPI performance and cache hit rate for each combination

of cache type and eviction policy for 16-line caches. Figure 61 and Figure 62 show the same

information for 32-line caches. Static and direct mapped caches do not use eviction policies and so

these have no bearing on performance. Once again, these charts make it clear that fifo and lrecent

dramatically outperform lifo and mrecent. It’s also noteworthy how small the performance

improvements for the 32-line caches over the 16-line caches are. Finally, we can see that the

0

1

2

3

4

5

6

7

8

8-line 16-line 32-line 64-line 128-line 256-line

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

 a
cr

o
ss

 a
ll

b
en

ch
m

ar
ks

Cache size

50

55

60

65

70

75

80

85

90

95

100

8-line 16-line 32-line 64-line 128-line 256-line

A
ve

ra
ge

 c
ac

h
e

h
it

 r
at

e
(%

)
ac

ro
ss

 a
ll

b
en

ch
m

ar
ks

Cache size

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 64 of 107

performance of the 2-way, 4-way and 8-way set associative caches and the fully associative cache is

very similar and therefore caches more complex than the 2-way set associative cache are unlikely to

be worthwhile. That said, the 2-way set associative cache does offer a large performance

improvement over a direct mapped cache and this is likely to be due to smaller number of conflicts.

Figure 59 CPI comparison of 16-line caches

Figure 60 Cache hit rate (%) comparison of 16-line caches

0

1

2

3

4

5

6

7

8

9

Static Direct Mapped 2-Way Set
Associative

4-Way Set
Associative

8-Way Set
Associative

Fully AssociativeA
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

 a
cr

o
ss

 a
ll

b
en

ch
m

ar
ks

Cache type

LIFO FIFO Most Recent Least Recent

0

10

20

30

40

50

60

70

80

90

100

Static Direct Mapped 2-Way Set
Associative

4-Way Set
Associative

8-Way Set
Associative

Fully AssociativeA
ve

ra
ge

 c
ac

h
e

h
it

 r
at

e
(%

)
ac

ro
ss

 a
ll

b
en

ch
m

ar
ks

Cache Type

LIFO FIFO Most Recent Least Recent

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 65 of 107

Figure 61 CPI comparison of 32-line caches

Figure 62 Cache hit rate (%) comparison of 32-line caches

0

1

2

3

4

5

6

7

8

9

Static Direct Mapped 2-Way Set
Associative

4-Way Set
Associative

8-Way Set
Associative

16-Way Set
Associative

Fully
Associative

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

 a
cr

o
ss

 a
ll

b
en

ch
m

ar
ks

Cache Type

LIFO FIFO Most Recent Least Recent

0

10

20

30

40

50

60

70

80

90

100

Static Direct Mapped 2-Way Set
Associative

4-Way Set
Associative

8-Way Set
Associative

16-Way Set
Associative

Fully
Associative

A
ve

ra
ge

 c
ac

h
e

h
it

 r
at

e
(%

)
 a

cr
o

ss
 a

ll
b

en
ch

am
rk

s

Cache Type

LIFO FIFO Most Recent Least Recent

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 66 of 107

Figure 63, Figure 64, Figure 65 and Figure 66 show the same information as the last 4 graphs, albeit

on a per benchmark basis instead of averaged. The 4-way, 8-way and 16-way variants have not been

included due to their similarity with the 2-way and fully associative variants.

Figure 63 CPI comparison of 16-line caches

Figure 64 Cache hit rate (%) of 16-line caches

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

Benchmark

Static Direct Mapped 2 Way Set Associative (FIFO) Fully Associative (FIFO)

50

55

60

65

70

75

80

85

90

95

100

C
ac

h
e

h
it

 r
at

e
(%

)

Benchmark

Static Direct Mapped 2 Way Set Associative (FIFO) Fully Associative (FIFO)

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 67 of 107

Figure 65 CPI comparison of 32-line caches

Figure 66 Cache hit rate (%) of 32-line caches

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9
A

ve
ra

ge
 C

yc
le

s
p

er
 In

st
ru

ct
io

n
 (

C
P

I)

Benchmark

Static Direct Mapped 2 Way Set Associative (FIFO) Fully Associative (FIFO)

50

55

60

65

70

75

80

85

90

95

100

C
ac

h
e

h
it

 r
at

e
(%

)

Benchmark

Static Direct Mapped 2 Way Set Associative (FIFO) Fully Associative (FIFO)

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 68 of 107

Select Configurations
Finally, a number of manually selected configurations are compared. The configurations were

influenced by lessons learned during the previous three explorations. The specifics of each of the

configurations are listed below:

Config A: Base configuration

Config B: Pipelined control unit

Config C: Pipelined control unit w/ pipeline forwarding

Config D: Pipelined control unit w/ gshare16_fifo2bit32

Config E: Pipelined control unit w/ gshare16_fifo2bit32 + pipeline forwarding

Config F: Pipelined control unit w/ n_way_set_associative_2_16_fifo

Config G: Pipelined control unit w/ n_way_set_associative_2_16_fifo + pipeline forwarding

Config H: Pipelined control unit w/ gshare16_fifo2bit32 + n_way_set_associative_2_16_fifo +

pipeline forwarding

Figure 67 Average CPI comparison for select configurations across all benchmarks

Figure 67 compares the CPI performance of each of the configurations averaged across all

benchmarks. Meanwhile Figure 68 to Figure 75 show the CPI performance of each of the

configurations on each of the benchmarks. Unsurprisingly, performance improves as more

optimisations are enabled. When comparing B and D we can see that enabling branch target

prediction, even when experiencing a high accuracy, does not have much of an impact on the CPI

performance. By comparing C and E however, we can see that branch prediction has more of an

impact when pipeline forwarding is enabled, although the impact is still fairly low compared to other

optimisations. In contrast to this, enabling a memory cache (F) results in a massive performance

improvement, more than halving the CPI. Config H represents the most highly optimised

configuration explored here. It was selected as it can achieve an excellent CPI score, however the

components chosen also offer value for money. Whilst other choices, such as a larger cache or target

predictor or a fully associative cache could have offered better performance, these components

would be substantially more expensive or complex and would be unlikely to offer particularly

dramatic performance improvements over those seen in H.

0

2

4

6

8

10

12

14

16

A B C D E F G HA
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

 a
cr

o
ss

 a
ll

b
en

ch
m

ar
ks

Configuration

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 69 of 107

Figure 68 CPI performance on each benchmark for configuration A

Figure 69 CPI performance on each benchmark for configuration B

Figure 70 CPI performance on each benchmark for configuration C

13

13.5

14

14.5

15

15.5

16

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

Benchmark

12.5

13

13.5

14

14.5

15

15.5

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

Benchmark

10.7
10.8
10.9

11
11.1
11.2
11.3
11.4
11.5
11.6

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

(C

P
I)

Benchmark

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 70 of 107

Figure 71 CPI performance on each benchmark for configuration D

Figure 72 CPI performance on each benchmark for configuration E

Figure 73 performance on each benchmark for configuration F

12.5

13

13.5

14

14.5

15

15.5
A

ve
ra

ge
 C

yc
le

s
p

er
 In

st
ru

ct
io

n
 (

C
P

I)

Benchmark

10.6
10.7
10.8
10.9

11
11.1
11.2
11.3
11.4
11.5
11.6

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

(C

P
I)

Benchmark

4.55
4.6

4.65
4.7

4.75
4.8

4.85
4.9

4.95
5

5.05

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

Benchmark

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 71 of 107

Figure 74 performance on each benchmark for configuration G

Figure 75 performance on each benchmark for configuration H

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4
4.1

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

Benchmark

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4
4.1

A
ve

ra
ge

 C
yc

le
s

p
er

 In
st

ru
ct

io
n

 (
C

P
I)

Benchmark

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 72 of 107

Evaluation
This project was able to gather a substantial volume of data, with the capability to gather

substantially more data given sufficient time and/or hardware. The data gathered enabled a detailed

exploration of 5 major modern hardware optimisation techniques: pipelining, (two variants of)

pipeline forwarding, memory caches, branch outcome prediction and branch target prediction. The

application of statistical analysis and data visualisations enabled the performance impact of each of

these optimisations to be examined and compared. For memory caches and branch prediction, the

data also enabled an analysis and comparison of different types of cache, target predictor and

outcome predictor. In addition to this, the impact and optimal values for parameters such as size

and eviction policy was evaluated.

This project was able to graphically demonstrate the underlying causes for many of the performance

improvements. It was shown that performance improvements from operand forwarding are due to a

reduced number of pipeline stalls. The project was able to demonstrate that the performance

improvements derived from branch target and outcome prediction are directly linked to the

prediction accuracies for these components. The project was then able to show that a high branch

prediction accuracy leads to a reduction in the number of pipeline flushes. Both of these factors

could be highly correlated to performance improvements. Similarly, it was able to show that

performance improvements as a result of memory caches are driven by the cache hit rate.

For the Hack platform, this project was able to show that memory caching would be the single most

impactful optimisation, able to improve performance by a factor of 3. The second most impactful

optimisation would be pipeline forwarding, which could not function without the pipelining

optimisation. The least impactful optimisation is branch prediction, which was only able to improve

performance slightly. These observations could be very useful to future hardware designers when

determining which optimisation to prioritise. However, the proportional impact of each of the

optimisations may not translate well to other architectures. Branch prediction, for example, may

have a much greater impact for other architectures. This could be, for example, because that

architecture supports direct branches.

This project culminated in configuration H, the most highly optimised version of the Hack platform.

This configuration made use of every optimisation explored in the project. The memory cache

selected for the configuration was a 16-line 2-way set associative cache, using a FIFO eviction policy.

The FIFO eviction policy was selected as it is simpler but offers similar performance to the least

recent policy, whilst offering much better performance than the most recent or LIFO policies. A 2-

way set associative cache was chosen as it offers dramatic performance improvements over a direct

mapped cache, whilst offering similar performance to set associative caches with a larger number of

ways, or the fully associative cache. All of these alternatives are more complex and expensive. The

16-line variant was selected as the step up in performance between 8 lines and 16 lines was most

pronounced and larger caches did not offer substantially higher performance but would be more

expensive. The outcome predictor selected was 16-line gshare. Gshare was chosen despite offering

slightly lower performance than local2bit predictors because it is able to leverage global information

and showed a slight performance improvement in the Pong benchmark, which is the most “realistic”

benchmark. A size of 16 was chosen as further increases in size did not dramatically increase the

performance of the predictor. The target predictor chosen was a 32-line fifo2bit predictor. The FIFO

eviction policy was chosen for the same reasons it was chosen for the memory cache. Despite the 2-

bit variant offering only slight performance improvements, it was selected as an additional bit does

not introduce significantly more complexity into the hardware design. A 32-line variant was selected

as there were dramatic improvements between the 16- and 32-line variants. Whilst these predictors

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 73 of 107

continued to improve in performance as more lines were added, these additional lines come at an

increasing cost, as the number of lines must double each time. Since the Hack platform has a

relatively small amount of program memory, 32-line target predictors are the largest that can be

justified. Configuration H is able to offer 4 times better performance than the base model which is a

dramatic improvement.

This project was not able to quantify the cost or complexity of the optimisations proposed. For

example, fully associative caches would be substantially more complex and expensive than direct

mapped caches, although these factors have been addressed in the text, the simulations did not

account for them. If these costs could be quantified it would provide more rigour to these

arguments. One way to quantify the costs could be to present a digital circuit implementing the

relevant logic and using the number of primitive logic gates required to build the circuit as a

complexity metric.

This project was not able to account for the additional time it might take for a fully associative cache

to lookup a value in the cache. This additional lookup time would come as a result of the increased

complexity of implementing full associativity. The simulations used in this project do not account for

this – even though the fully associative cache has a better accuracy, it may perform worse than a

direct mapped cache due to a longer look up time.

One final criticism of the project is that the simultaneous writeback optimisation requires the

introduction of a second memory unit. This is because it becomes possible for a read and write

operation to occur at the same time. The introduction of a second memory unit obviously introduces

additional costs, complexity and space requirements to the CPU. These additional factors are not

accounted for during simulation. Additionally, the introduction of dedicated read/write units results

in two separate memory caches (again increasing complexity). The impact of separate memory

caches was not evaluated by this project. A possible improved approach could be to introduce a

queuing system within the memory unit such that only one unit is required.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 74 of 107

Future Work
Whilst exploring the results, it was noted that branch prediction has a low impact on the

performance of the system. In the future, it would be interesting to evaluate whether the branch

prediction components could be moved into the fetch unit and therefore predictions could be made

earlier in the pipeline, eliminating the need for half flushes.

Although this project has been able to look at some of the hardest hitting optimisations, such as

memory caches, there are still many more optimisations that could be examined. Unfortunately, due

to time constraints, not all of them could be explored in this project. However, if there was more

time, there are a number of very important optimisations which would be very valuable additions to

this project.

Speculative execution and out-of-order execution are two optimisation techniques that are utilised

heavily in modern CPUs. It would have been valuable to evaluate how these major optimisation

packages compare with the optimisations already explored in this project. It would also be worth

investigating how CPU performance could be improved by adding additional functional units, such as

having two ALUs.

Another interesting direction for the project would be to further investigate parallelisation. Whilst

this has already been touched upon through the use of pipelining and the simultaneous writeback

optimisation, there is a lot more that could be done. The addition of vector functional units enabling

SIMD would have been one particularly compelling area. An alternative approach could have been to

include two or more complete CPUs and move into the multi-core domain. Both of these

optimisations would likely require new instructions to be added to the system, which would have

required changes at every level of the software hierarchy.

It would have been fascinating to evaluate adding multiply and divide instructions and dedicated

functional units for these operations. The current implementations for multiple and divide are very

slow and inefficient, requiring repeated addition or subtraction.

One area of improvement for the Hack platform that would be intriguing to explore, but is not

necessarily related to hardware optimisation would be to enable the system to modify the ROM

during runtime. This would move the system closer to modern computing systems that are able to

download new programs and run them without any changes to the hardware. This would also make

“self-hosting” a possibility, meaning that developers could write, compile and run code directly on

the Hack platform without needing access to another machine. In addition to physical hardware

changes, all of these ideas would require the operating system to play a much larger role.

Improving the operating system would also be a highly interesting and educational task. As

mentioned previously, the current operating system is closer to a standard library than an operating

system. Modifying the operating system such that it could support tasks as described above would

be a complex undertaking. The operating system would need to be capable of loading a new

program without rebooting. It would also be interesting to add other modern features, such as

multiple users or multi-tasking to the operating system.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 75 of 107

Conclusion
After providing an overview of Nissan and Schocken’s Hack platform, this project has explained what

CPU optimisations are and why they are needed. A brief study of old and modern CPU architectures

enabled a realistic cycles per instruction schedule to be defined. Three generations of CPU simulator

were developed, culminating in a simulator offering high performance and an elegant programmatic

format for defining optimisations. 15 benchmarks were defined, 2 of which are “real-world”

benchmarks taken from the book and 13 “synthetic” micro benchmarks testing various aspects of

the CPU were developed as part of this project. This was followed by a detailed description of 5

modern CPU optimisation techniques. A toolkit for running batches of simulations was then

developed in python. This toolkit was used to run and generate results for around 20,000 different

configurations – where each configuration featured a different combination of optimisations and

benchmark program. A graphical and textual deep dive of these results was then conducted,

culminating in an insightful evaluation of the results.

This project has been able to show that the most impactful CPU optimisation is memory caching.

This finding can be explained by the fact that accessing memory is one of the most fundamental

operations that a CPU performs. Despite this, advances in memory technology have not been able to

keep pace with advances in processor technology. This has resulted in a situation where CPU

performance is often bottlenecked by memory performance. In this context, it is easy to see why

offering the CPU a bank of faster memory could offer dramatic performance gains.

This project has also been able to show that pipelining and pipeline forwarding offer a valuable set

of tools for increasing the instruction throughput of a CPU. These techniques enable a degree of

instruction-level parallelism, which can improve performance by enabling a CPU to perform multiple

tasks simultaneously. Pipeline forwarding further increases the level of parallelism by allowing the

CPU to process branch instructions and perform memory writeback simultaneously, as well as

enabling the fetching of operands directly from the writeback unit, rather than waiting for these

operands to be written back to memory. These techniques offer a moderate impact on the

performance of the system.

Despite being able to demonstrate a highly accurate branch prediction subsystem, consisting of

outcome and target predictors, this project was not able to derive a particularly impactful

performance improvement from branch prediction. However, it is this author’s opinion that greater

performance gains could be derived on alternative architectures.

Configuration H, produced by this project, was able to offer a significant 4 times performance

improvement over the base configuration. This is a substantial performance improvement and

shows that CPU optimisation techniques are valuable and effective. As other avenues for deriving

performance gains, such as increasing clock speed, begin to reach their limits, developing and

improving CPU optimisations will become increasingly important.

The contribution of this project has been to compare and contrast some of the most important

modern CPU optimisations. As well as helping readers to understand how these optimisations work

and why they are needed, this report presents a simple hardware architecture that provides the

ideal test bench for testing CPU optimisations. The simulation software developed in this project

provides an environment for gaining hands-on experience interacting with the system and gathering

results in an automated fashion. The use of a modular design makes it easy for anyone to develop a

new optimisation for the platform. This report outlines which optimisations have the greatest impact

on performance and uses data visualisation to present these results to the reader, which can act as a

set of guidelines to hardware designers.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 76 of 107

References
[1] N. Nisan and S. Schocken 2005 “The elements of Computing Systems”.
[2] T. Spink 2022 St Andrews CS4202 Lecture 3 “Memory”
[3] T. Spink 2022 St Andrews CS4202 Lecture 4 “Memory Optimisation”
[4] T. Spink 2022 St Andrews CS4202 Lecture 5 “Branch Prediction”
[5] T. Spink 2022 St Andrews CS4202 Lecture 6 “Instruction Level Parallelism: In Order

Execution”
[6] T. Spink 2022 St Andrews CS4202 Lecture 7 “Instruction Level Parallelism: Out of Order

Execution”
[7] T. Spink 2022 St Andrews CS4202 Lecture 8 “Instruction Level Parallelism: Speculative

Execution”
[8] T. Spink 2022 St Andrews CS4202 Lecture 11 “Data Level Parallelism”
[9] T. Spink 2022 St Andrews CS4202 Lecture 15 “Parallelism”
[10] T. Spink 2022 St Andrews CS4202 Lecture 16 “Multiprocessors”
[11] D. Comer 2017, Essentials of Computer Architecture 2nd Edition, Chapter 12 “Caches and

Caching”
[12] J. L. Hennessy, David A. Patterson 2012 “Computer Architecture: A Quantitative Approach”,

5th Edition, Appendix C.
[13] C. Maiza, C. Rochange, 2006 “History-based Schemes and Implicit Path Enumeration”.
[14] Z. Su, M. Zhou, 1995 “A Comparative Analysis of Branch Prediction Schemes”.
[15] N. Ismail, 2002 “Performance study of dynamic branch prediction schemes for modern ILP

processors”.
[16] R.M. Tomasulo 1967 “An Efficient Algorithm for Exploiting Multiple Arithmetic Units”
[17] H. Wagstaff et al. 2017 “SimBench: A portable benchmarking methodology for Full-System

Simulators”
[18] T. Spink et al. 2020 “A Retargetable System-level DBT Hypervisor”
[19] Y. He 2021 “Research on Modern Computer Architecture Optimization Techniques:

Implementation and Measurements for Big Data Processing”
[20] Intel “How to Read and Understand CPU Benchmarks” accessed on 11/06/2022:
[21] SPEC website accessed on 12/06/2022:
[22] Y. Liu, G. Gibson 1986, Microcomputer Systems: The 8086/8088 Family

Architecture, Programming and Design, Second Edition, Appendix A
[23] A. Fog Software optimization manuals, 2022, Manual 4: “Instruction Tables”
[24] Piston Rust library: https://www.piston.rs/
[25] SDL2 Rust bindings (library): https://github.com/Rust-SDL2/rust-sdl2
[26] Wikipedia “Classic RISC pipeline” accessed on 08/07/2022:

https://en.wikipedia.org/wiki/Classic_RISC_pipeline#Memory_access
[27] Prabakar notes on CDA-4101 Lecture 3 accessed on 08/07/2022:

https://users.cs.fiu.edu/~prabakar/cda4101/Common/notes/lecture03.html
[28] C. Maiza et al. 2005 “A case for static branch prediction in real-time systems”

https://www.piston.rs/
https://github.com/Rust-SDL2/rust-sdl2
https://en.wikipedia.org/wiki/Classic_RISC_pipeline#Memory_access
https://users.cs.fiu.edu/~prabakar/cda4101/Common/notes/lecture03.html

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 77 of 107

Appendix A: Links
Nand2Tetris implementation: https://git.jbm.fyi/jbm/Nand2Tetris

1st Generation Simulator: https://git.jbm.fyi/jbm/Hack_simulator

2nd Generation Simulator: https://git.jbm.fyi/jbm/Hack_sim2

3rd Generation Simulator: https://git.jbm.fyi/jbm/Hacksim3

Hack toolchain: https://git.jbm.fyi/jbm/Hack_toolchain

Benchmarks (and toolkit): https://git.jbm.fyi/jbm/Hack_benchmarks

https://git.jbm.fyi/jbm/Nand2Tetris
https://git.jbm.fyi/jbm/hack_simulator
https://git.jbm.fyi/jbm/hack_sim2
https://git.jbm.fyi/jbm/hacksim3
https://git.jbm.fyi/jbm/hack_toolchain
https://git.jbm.fyi/jbm/hack_benchmarks

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 78 of 107

Appendix B: Hardware Implementation
This section will present and explain an implementation of the Hack architecture based on the

Nand2Tetris course [1]. This implementation will serve as both a reference Hack implementation and

as a base model to be optimised later in the project. Additionally, this section will provide the reader

with an understanding of the construction and capabilities of the system. The only components

required to construct the computer are NAND gates and Data Flip-Flops (DFFs).

Primitive Logic Gates
Fundamentally, a computer is nothing but a collection of logic gates arranged in such a way as to

facilitate the execution of a program. Logic gates are units that take a number of binary inputs and

produce a number of binary outputs based on the input value(s). There are four primitive logic gates:

NOT, AND, OR and XOR. NOT gates take one input and produce one output that is the opposite of

the input (1 if the input is 0 and vice versa). The remaining gates take two inputs and produce one

output. AND produces 1 if both inputs are 1, OR produces 1 if at least one input is 1 and XOR

produces 1 if exactly one of the inputs is 1. In addition to these primitive gates, there are three

negated versions of the primitives: NAND, NOR and NXOR. These are simply a AND, OR or XOR gate

who’s output is negated. Conveniently, any of the other gates mentioned here can be constructed

from a collection of NAND gates. This makes them an ideal choice as a basic building block. Figure 76

– Figure 79 show how the four primitive logic gates can be derived from NAND gates.

Figure 76 Deriving NOT gate from NAND gate.

Figure 77 Deriving AND gate from NAND gates.

Figure 78 Deriving OR gate from NAND gates

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 79 of 107

Figure 79 Deriving XOR gate from NAND gates

Multi-bit Primitive Logic Gates
As the system under construction is 16-bit, it will require 3 multi-bit versions of these primitive logic

gates. The first is an 8-way OR gate. This gate takes an 8-bit input and generates a 1-bit output that

is the result of ORing all of the input bits together. This means the gate will return 1 if any of the

input bits are 1, or 0 otherwise. Figure 80 derives the 8-way OR gate from primitive OR gates.

Figure 80 Deriving 8-way OR gate from OR gates.

Next, the system requires 16-bit versions of the NOT and AND gates. These are both bitwise gates

meaning that they apply the logical operation to each bit of the input(s) independently. In the case

of the 16-bit bitwise NOT gate, each bit of the input is negated. The 16-bit bitwise AND gate takes

two 16-bit inputs and returns a 16-bit output where each bit is the result of ANDing together the

corresponding bits in both inputs; i.e. out[0] = a[0] AND b[0]…out[n] = a[n] AND b[n]. Both gates are

derived from their respective primitive gates in Figure 81 and Figure 82 shown below.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 80 of 107

Figure 81 Deriving 16-bit (bitwise) NOT gate from primitive NOT gates.

Figure 82 Deriving 16-bit (bitwise) NOT gate from primitive NOT gates.

Multiplexer and Demultiplexers
Multiplexer and demultiplexers are heavily relied upon during the construction of the system.

Multiplexers take two input signals and send one of them to the output. The signal that is outputted

is determined by a third input. Demultiplexers perform the opposite operation, they take one input

and have two output channels. A second input controls which output channel the input should be

sent to. Figure 83 and Figure 84 show how multiplexers and demultiplexers respectively can be

derived from primitive logic gates.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 81 of 107

Figure 83 Deriving multiplexer (MUX) from primitive logic gates.

Figure 84 Deriving demultiplexer (DMUX) from primitive logic gates.

Four and eight-way demultiplexers can be easily derived from basic demultiplexers as shown in

Figure 85 and Figure 86.

Figure 85 Deriving 4-way demultiplexer from basic demultiplexers.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 82 of 107

Figure 86 Deriving 8-way demultiplexer from 4-way demultiplexers.

16-bit versions of multiplexers are required so that 16-bit buses can be routed round the system.

These can be derived from basic multiplexers, shown in Figure 87.

Figure 87 Deriving 16-bit multiplexer from basic multiplexer.

Again, four and eight way 16-bit multiplexers can be derived from 16-bit multiplexers as shown in

Figure 88 and Figure 89.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 83 of 107

Figure 88 Deriving 4-way 16-bit multiplexor from 16-bit multiplexers.

Figure 89 Deriving 8-way 16-bit multiplexer from 4-way 16-bit multiplexers.

Binary Arithmetic
The Hack system uses 16-bit two’s complement binary to represent integers where the left most bit

is the Most Significant Bit (MSB). Two’s complement is a scheme used to represent signed integers in

binary where the MSB retains its magnitude but becomes negative. This will mean that the largest

positive number will be represented as 0 followed by 1s, the largest negative number will be

represented as 1 followed by 0s, -1 would be represented by every bit being 1 and 0 would be

represented by every bit being 0. The MSB for any negative number will always be 1. Two

complement is a convenient representation as maths operations such as addition still work as

normal without any special considerations for signage.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 84 of 107

If integers can be represented as a series of bits (1s and 0s) on a wire, then circuits that can perform

arithmetic operations can be built. The simplest of these is a half adder which takes two 1-bit

numbers and outputs the sum of the two numbers and indicates if there is a carry. As there are only

two inputs to the half adder, it is not able to account for any carry from previous additions. This

problem is solved by the full adder, which has a third input enabling it to forward any carry bits. The

full adder is derived from primitive logic gates in Figure 90.

Figure 90 Deriving full adder from primitive logic gates.

Once again, in order to deal with 16-bit numbers, the Hack system requires a 16-bit version of the

full adder. This is shown in Figure 91 below.

Figure 91 Deriving 16-bit full adder from basic full adders.

Arithmetic Logic Unit (ALU)
An Arithmetic Logic Unit or ALU is a digital circuit that can perform arithmetical or logical operations

on integer inputs. Traditionally, the ALU is the centrepiece of a computer processor, however

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 85 of 107

modern processors may have multiple ALUs or may consider other units (such as a Floating-Point

Unit) to be of co-equal importance.

The Hack architecture, with its focus on simplicity, dictates that the ALU should be as simple as

possible, implementing only the most essential operations and leaving the rest to be implemented in

software. The Hack ALU takes two 16-bit integers x and y as input and produces one 16-bit integer

out as output. The operation performed on the two inputs is determined by six 1-bit control inputs

and the ALU also has two 1-bit status outputs.

The six control inputs are designated zx, zy, nx, ny, f and no. Zx and zy are used to zero the x and y

inputs respectively. Nx and ny are used to negate the x and y inputs respectively. F is used to specify

the operation, if set to 0 a bitwise AND operation will be performed on the inputs and if set to 1 the

inputs will be added together. Finally, no is used to negate the output. There are 64 possible

combinations of control inputs each of which affects a different function. However, only 18 of these

are of interest and these are shown in Table 6. Symbols !, & and | represent bitwise NOT, AND and

OR respectively.

Table 6 ALU operations based on Figure 2.6 of The Elements of Computing Systems [1].

zx nx zy ny f no out

1 0 1 0 1 0 0

1 1 1 1 1 1 1

1 1 1 0 1 0 -1

0 0 1 1 0 0 x

1 1 0 0 0 0 y

0 0 1 1 0 1 !x

1 1 0 0 0 1 !y

0 0 1 1 1 1 -x

1 1 0 0 1 1 -y

0 1 1 1 1 1 x+1

1 1 0 1 1 1 y+1

0 0 1 1 1 0 x-1

1 1 0 0 1 0 y-1

0 0 0 0 1 0 x+y

0 1 0 0 1 1 x-y

0 0 0 1 1 1 y-x

0 0 0 0 0 0 x&y

0 1 0 1 0 1 x|y

The two status outputs are designated ng and zr. Ng is set to 1 if the output is negative, whilst zr is

set to 1 if the output is equal to zero.

An implementation of the Hack ALU from logic gates previously derived in this section is shown in

Figure 92.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 86 of 107

Figure 92 Implementation of Hack ALU from previously derived logic gates.

Memory Chips
All the chips discussed up to this point in this section have been combinational circuits, named so

because their outputs depend entirely on the combination of their inputs. Whilst these chips are

able to perform a wide variety of useful functions, they are not able to maintain state. Computers

must be able to maintain state and this is where memory chips which employ sequential logic come

in.

The act of remembering something implies the concept of time. Therefore, computers must have a

method of keeping time. For most computers, an oscillator which alternates between two states, 1

and 0, serves as the clock. The time between the first state starting and the second state ending is

called a cycle and each cycle models one time unit. The computer can then be synchronised by

broadcasting the clock signal to every sequential chip in the system.

The implications of sequential logic, including clocks and synchronisation, can be abstracted away

into a single chip – the Data Flip-Flop (DFF). DFFs are the second elementary building block needed

for the system and have one input and one output. In addition to these, the DFF must be connected

to the clock. The output of a DFF is its input in the previous clock cycle.

DFFs become latched at the beginning of each clock cycle. Once a DFF is latched, its output will not

change until the start of the next cycle. This means that the output value of a DFF is committed at

the start of each cycle. As all of the combinational logic used in the system will eventually output to

a sequential element, the output of combinational circuits only matters at the start of each cycle.

Therefore, as long as the length of a cycle is at least as long as the maximum propagation time within

the processor, the outputs of combinational circuits can be guaranteed to be valid the start of a

cycle and it doesn’t matter if the outputs of these circuits is undefined up until that point.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 87 of 107

The most basic memory chip in the system is the bit. A bit is simply a DFF with an interface that

enables a new value to be loaded into the DFF at select times. The DFF retains its value at all other

times. The bit is implemented from DFFs and previously derived logic gates in Figure 93 below.

Figure 93 Bit implementation.

Following the pattern we are now used to, a 16-bit version of the Bit is needed and this is referred to

as a register. The register is implemented in Figure 94 below.

Figure 94 16-bit register chip implementation.

The Random Access Memory (RAM) unit of the Hack system is made up of a bank of registers along

with addressing circuitry to specify which of the registers should be accessed. This is implemented

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 88 of 107

through a hierarchy of memory bank chips with varying sizes: 8-bytes, 64-bytes, 512-bytes, 4-

kilobytes and 16-kilobytes. An implementation of the first of these chips is shown in Figure 95 below.

Figure 95 Implementation of the 8-byte RAM unit.

Other than the 16-kilobyte unit, the remaining memory chips can be implemented according to the

generic implementation shown in Figure 96.

Figure 96 Generic implementation of RAM unit with 2^n registers.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 89 of 107

The 16K RAM unit is slightly different and its implementation is shown in Figure 97 below.

Figure 97 16-kilobyte RAM unit implementation.

When a computer processor is executing a program, it must keep track of which instruction should

be executed next. This job is done by a specialised register called the Program Counter or PC which

stores the address of the next instruction to be executed. After executing an instruction, the PC is

usually incremented so that the next instruction can be executed, however in some cases (namely

jumps), execution may be resumed from a different address. Finally, there must be some way to

reset the computer so that it restarts the execution of the program. The PC implemented in Figure

98 below will increment its value if inc is 1, will set its value to in if load is 1 and will set its value to 0

if reset is 1. In all other cases, the value of the PC will remain the same.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 90 of 107

Figure 98 Program counter implementation.

Memory Unit, ROM and Peripherals
The final RAM unit for the system is shown in Figure 99.

Figure 99 Memory unit implementation.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 91 of 107

The memory unit has the same interface and looks similar to the memory bank chips defined in the

previous sections. However, unlike the previous chips, there are only three underlying banks and

each are of a different size. The 16K RAM chip is the same as the one defined in the previous section,

however the other two chips are memory-mapped peripherals.

Memory mapping is a technique in which peripheral devices are represented to the computer by

one or more bytes in the RAM. This scheme is much simpler and scalable then the alternatives.

The Hack system is equipped with a 256 (height) by 512 (width) monochrome display. This is

represented by an 8K RAM chip which, from the computer’s perspective, can be used in exactly the

same way as any other 8K RAM chip. However, setting any bit within this memory space will have

the effect of illuminating the corresponding pixel in the display. Each row in the screen is

represented by 32 consecutive 16-bit words starting at the top-left corner of the screen. The pixel at

row r (from the top) and column c (from the left) is represented by the c%16 bit of the word found

at Screen[r*32+c/16].

The Hack system is also equipped with a standard keyboard. This is represented by a 1-byte RAM

chip (register) that can be read from in the same way as any other memory chip. It is, however,

different to every other memory chip in that there is no mechanism for writing a value to the

memory space. Instead, the register will be populated by the ASCII code representing whichever key

happens to be held at the current time, or 0 if no key is held. Special keys are represented by the

codes shown in Table 7.

Table 7 Special keyboard codes taken from Figure 5.6 of The Elements of Computing Systems [1].

Key Code

Newline 128

Backspace 129

Left arrow 130

Up arrow 131

Right arrow 132

Down arrow 133

Home 134

End 135

Page up 136

Page down 137

Insert 138

Delete 139

Escape 140

F1-F12 141-152

Programs are supplied to the Hack system in the form of replaceable cartridges. Each cartridge

contains a Read Only Memory (ROM) Chip. This is a memory chip that is similar to the previously

discussed memory bank devices, however it lacks a mechanism to write new values to the registers.

Each register stores a single instruction. The size of the ROM chip is 32 kilobytes, however not every

program will use the entire available space.

Central Processing Unit (CPU)
All the chips needed to build a Hack Central Processing Unit (CPU) have now been defined. The Hack

CPU has 3 registers: A, D and M. D is a general-purpose data register; A can be used as either a

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 92 of 107

general-purpose data register or as the address register; M is a virtual register that always refers to

the memory location with the address of the current value of A (M = RAM[A]).

Instructions are supplied to the CPU as a 16-bit word. We will refer to each of the bits in the

instruction using the labels shown in Table 8 below.

Table 8 Instruction bit labels.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Label t x x a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

There are two types of instruction: A-instructions and C-instructions. The t-bit determines which of

the two types an instruction is.

A-instructions are used to load a value into the A register. A-instructions are encoded by setting the

t-bit to 0. The remaining bits (bits 1-15) form a 15-bit integer that is loaded directly into the A

register. For example, the instruction 0000 0000 0000 0101, would load the value 5 into the A

register.

C-instructions are encoded by setting the t-bit to 1. Neither x-bit is used by the C-instruction and so

both should also be set to 1. The remaining bits then form 3 fields: Computation (comp), Destination

(dest) and Jump (jump).

The comp field consists of bits 3 – 9 are is used to specify what the ALU should compute. The value

contained within the D register is always used as the x-input to the ALU. The y-input could be either

A or M and this is specified by setting the a-bit to 0 or 1 respectively. The remaining bits specify the

control inputs to the ALU. There are 128 possible combinations of the 7 comp bits, of which only 24

are included in the Hack specification. These are shown in Table 9, note that the left-most and right-

most columns show the function (and assembly mnemonic) that would be computed given the

specified c-bits if the a-bit is 0 and 1 respectively. For example, the comp part (shown in bold) of the

instruction 1110 0011 1000 0000 would instruct the ALU to compute D-1.

Table 9 Possible comp field values based on Figure 4.3 of The Elements of Computing Systems [1].

a=0 c1 c2 c3 c4 c5 c6 a=1

0 1 0 1 0 1 0 -

1 1 1 1 1 1 1 -

-1 1 1 1 0 1 0 -

D 0 0 1 1 0 0 -

A 1 1 0 0 0 0 M

!D 0 0 1 1 0 1 -

!A 1 1 0 0 0 1 !M

-D 0 0 1 1 1 1 -

-A 1 1 0 0 1 1 -M

D+1 0 1 1 1 1 1 -

A+1 1 1 0 1 1 1 M+1

D-1 0 0 1 1 1 0 -

A-1 1 1 0 0 1 0 M-1

D+A 0 0 0 0 1 0 D+M

D-A 0 1 0 0 1 1 D-M

A-D 0 0 0 1 1 1 M-D

D&A 0 0 0 0 0 0 D&M

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 93 of 107

D|A 0 1 0 1 0 1 D|M

The dest field consists of bits 10 – 12 and specifies where the output of the ALU should be stored. If

d1 is set, the output is stored in the A register; if d2 is set the output is stored in the D register and if

d3 is set the output is stored in the M register. One, more than one, or none of the d-bits may be set.

The jump field specifies which instruction should be executed next. There are two possibilities,

either the next instruction in the program will be executed (which is the default) or execution will

resume from the address stored in the A register (referred to as a jump). Which of these outcomes

occurs is determined by the three j-bits and the output of the ALU. If none of the j-bits are set then

no jump will occur; if j1 is set a jump will occur if the output is negative; if j2 is set a jump will occur if

the output is equal to zero and if j3 is set a jump will occur if the output is positive. If all three bits are

set a jump will occur unconditionally. The combination of these three bits gives rise to eight

possibilities as shown in

Table 10 Possible jump field values based on Figure 4.5 of The Elements of Computing Systems [1].

j1 j2 j3 Description Assembly mnemonic

0 0 0 No Jump -

0 0 1 Jump if output > 0 JGT

0 1 0 Jump if output = 0 JEQ

0 1 1 Jump if output >= 0 JGE

1 0 0 Jump if output < 0 JLT

1 0 1 Jump if output != 0 JNE

1 1 0 Jump if output <= 0 JLE

1 1 1 Unconditional Jump JMP

An implementation of the Hack CPU based on previously derived components and capable of the

behaviour described above is shown in Figure 100.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 94 of 107

Figure 100 Implementation of the Hack CPU.

Complete System
Finally, the complete hardware implementation is shown in Figure 101.

Figure 101 Complete hardware implementation.

Appendix C: Software Implementation
This section contains a brief exploration of the software stack for the Hack platform, for more details

see The Elements of Computing Systems [1].

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 95 of 107

Assembler
The instructions for the Hack CPU take the form of 16-bit binary integers. Understandably, humans

do not find it easy to work with long lists of numbers. Luckily, the limited number of possible values

for each of the three fields (comp, dest and jump) making up the instruction make it trivial to define

a one-to-one mapping of mnemonics to binary encodings. Taken together, these mnemonics form a

basic programming language known as Hack assembly.

Hack assembly A-instructions take the form of @constant, which simply loads the constant into the

A register. On the other hand, C-instructions take the form of dest=comp;jump. The dest and jump

fields are both optional but comp is compulsory. If the dest field is empty then ‘=’ may be omitted,

whilst ‘;’ may be omitted if jump is empty.

The dest mnemonic may be any combination and order of the symbols ‘A’, ‘M’ and ‘D’. The result of

the comp field will then be stored in each of the registers present. The possible comp mnemonics

are listed in Table 9 and the possible jump mnemonics are listed in Table 10.

Note that when affecting an unconditional jump, it is conventional to use the instruction “0;JMP”.

This is because the comp field is mandatory but ignored during unconditional jumps. Therefore, the

convention is to have the ALU simply compute 0. Also note that there are conflicting uses of the A

register. The programmer can use the A register to store a data memory address for a subsequent C-

instruction involving M, or it can be used to store an instruction memory address for a subsequent

instruction involving a jump. Therefore, to avoid undefined behaviour, an instruction that may cause

a jump should not use the M register.

The program that translates between assembly code and binary machine instructions is called an

assembler. The assembler developed for this project is written in the Rust programming language

and a link to the source code can be found in Appendix A. In addition to simple translation duties,

the assembler program also manages two types of symbols which makes life easier for the

programmer.

The first type of symbol is a label which can be defined using the pseudo-command “(label)”. This

will define a symbol referring to the address (in program memory) of the instruction immediately

after the label. These labels can then be used as targets for jumps. A label can only be defined once

but can be used anywhere within the program.

The second type of symbol is a variable. The assembler will assign a memory address (between 16

and 255) to each previously unencountered symbol. When the symbol is encountered again in the

future, it will be translated to the previously assigned memory address. This frees the programmer

from the burden of manually assigning variables to memory locations.

In addition to these user-defined symbols, there are a number of predefined symbols. First there are

16 virtual registers R0 – R15, these refer to memory locations 0 – 15. In addition to these, the

symbols SP, LCL, ARG, THIS and THAT also refer to memory locations 0 – 4 (these are used in the

virtual machine implementation later). Finally, the symbols SCREEN and KBD refer to the bases of

the screen and keyboard memory maps at memory addresses 16384 and 24576 respectively.

One final duty of the assembler is to remove comments, which can be created by using the symbols

“//” at the start of a line.

An example of a simple assembly program, which multiplies two numbers together, is shown in

Figure 102.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 96 of 107

Figure 102 Multiplication program in Hack assembly.

Virtual Machine (VM)
Writing programs for the system in assembly is substantially more convenient then writing them in

machine code, however, for the programmer used to the bells and whistles available in modern

programming languages, it still seems primitive. The next step then, is providing a compiler to enable

a high-level language to be used on the Hack platform. Some compilers go down the route of

translating high-level code directly to assembly, however, today it is more popular to first translate

the high-level code into an intermediatory medium-level language and then later translate the

intermediatory code into assembly and finally machine code. As well as allowing for abstraction, this

approach has the benefit of decoupling the “front” and “back” ends: once an intermediatory code

translator program has been written for a platform, any language that can compile to the

intermediatory code can be run on that platform; and once a high-level to intermediatory code

translation program has been written, the high-level code can run on any platform which has an

intermediatory code translation implementation.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 97 of 107

The Hack platform specifies a Stack-Based Virtual Machine (VM) that can run a specified

intermediatory language called VM language. The virtual machine consists of 8 memory segments:

argument, local, static, constant, this, that, pointer and temp, as well as the stack and heap. Values

can be pushed onto the stack from a segment or popped from the stack into a segment using the

commands push [segment] [index] and pop [segment] [index] respectively. Operations can be

performed by first pushing the operands onto the stack and then calling a function or operation. In

either case the operands will be popped off the stack and the result pushed onto the stack, as shown

in example in Figure 103. Built in operations are add, sub, neg, eq, gt, lt and, or and not and

programmers can define functions to perform other operations. Functions are defined using the

syntax function [name] [numLocals] where both a name of for the function and the number of local

variables within the function must be specified. Functions can be called using the syntax call [name]

[numArgs] where both the name of the function to be called and the number of arguments must be

specified. Programmers can also define labels using the label command which can be jumped to

using goto, or conditionally jumped to using if-goto. If-goto pops the top item off the stack and if it is

not zero execution resumes from the label and otherwise continues with the next instruction.

Finally, functions are returned from using the return command.

Figure 103 Stack-based evaluation of (x < 7) or (y=8) assuming x=12 and y=8 taken from Figure 7.4 of The Elements of
Computing Systems [1].

The argument and local memory segments store a functions arguments and local variables

respectively. The static memory segment is shared by all functions in the current file. The this and

that memory segments can be made to point to any area of the heap by setting the first (for this)

and second (for that) entries in the pointer segment. The temp memory segment has 8 entries that

are shared across every function in a program and are available for general use. Finally, the constant

segment is a virtual memory segment that holds all the constants in the range 0 to 32767.

The VM translator program has the job of taking a VM program as input and outputting a Hack

assembly program that affects the same behaviour as the VM program. The VM translator for the

project was written in the Rust programming language and a link to the source code can be found in

Appendix A.

The SP (Stack Pointer), ARG, LCL, THIS and THAT symbols used to store the top of the stack and bases

of the argument, local, this and that segments respectively. The ith entry of argument, local, this and

that segments are mapped to address base+i, where base is the current value store in the register

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 98 of 107

associated with that segment. The two entries of the pointer segment are used to set THIS and THAT

directly. The R5 – R12 symbols are used to hold the 8 entries of the temp segment. The constant

segment is truly virtual and the implementation will supply the relevant constant when this segment

is accessed. The memory management for the static segment is delegated to the assembler by

simply translating an access to static 0 in file F to the symbol F.0. The assembler will then allocate

this symbol to an address in the range 16-255.

The argument and local segments are stored inside the stack, underneath the working stack for the

current function, as illustrated in Figure 104. This is why function and call commands must specify

the number of local and argument variables. When a function with n arguments is called, a return

address is generated and then pushed into the stack. Next the values of LCL, ARG, THIS and THAT are

saved to the stack. ARG and LCL are set to new values. Then a jump to the functions label can be

affected and finally the generated return address is declared. Before the main body of a function, it

must define a label and push 0 to the stack n times to set up the local segment. When the function

returns, it can recover the previous values of LCL, ARG, THIS and THAT from the stack and restore

the SP to its state before the function was called. Finally, it recovers and then jumps to the return

address saved on the stack.

Figure 104 Diagram of global stack structure taken from Figure 8.4 of The Elements of Computing Systems [1].

Figure 105 shows how a simple C function might be translated into VM code.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 99 of 107

Figure 105 Translating a C program to VM code taken from Figure 7.9 of The Elements of Computing Systems [1].

Compiler
The compiler used in this project translates code from the high-level programming language Jack

into a VM code. The compiler was written in the Rust programming language and a link to the source

code can be found in Appendix A.

Jack is a simple, weakly-typed, object-oriented language with most of the features present in

popular modern programming languages. A Jack program consists of one or more classes. Each class

must reside in its own .jack source file. The entry point for every Jack program is a function named

main within a class named Main (case sensitive). A Jack class consists of a number of field and/or

static variables and a number of subroutines. Each subroutine can be either a constructor, function

or method. Jack has three primitive data types: integer, char, boolean. Alternatively, a variable may

be of object class in which case it is actually a reference to an object on the heap. This means that

programmers can define their own types using classes. There are four kinds of variables (which

correspond with the VM memory segments): field, static, local and parameter each of which has an

associated scope. Field and static variables must be declared at the start of a class usings the field

and static keywords respectively. Local variables must be declared at the start of subroutines using

the keyword var. Parameter variables are declared as part of a function declaration.

 Jack features five statements: let, if, while, do and return. If, while and return correspond to

standard C-style statements. Let is used to set a variable to a value and do is used to call a

subroutine and discard its return value. Jack also has recursively-defined expressions, however it

does not define an operator precedent and therefore liberal use of brackets is encouraged.

Jack is a context-free grammar and only requires lookahead when determining whether a variable is

a standard variable or an array. Conveniently, the VM layer already provides most of the memory

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 100 of 107

management and function calling capabilities needed by the high-level language. Jack does not

support overriding or inheritance which simplifies the compiler and means that tasks such as

determining which methods belong to each instance of an object can be done statically.

Figure 106 - Figure 108 below show a number of example Jack programs.

Figure 106 Hello World program in Jack taken from Figure 9.1 of The Elements of Computing Systems [1].

Figure 107 Example Jack program demonstrating procedural and array features taken from Figure 9.2 of The Elements of
Computing Systems [1].

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 101 of 107

Figure 108 Example Jack program showing object handling features taken from Figure 9.4 of The Elements of Computing
Systems [1].

Operating System (OS)
The Operating System (OS) of a computer acts as a bridge between the hardware and software of a

computer. It does this by interacting with the hardware of the computer and providing a number of

services to programs running on the system. As the Hack platform is single-tasking and single-

program it does not require a particularly complex OS and in fact the Hack OS may be closer to a

standard library than an OS. With that said, it does provide a number of essential services which are

divided into 8 categories (classes) and listed below:

• Math: provides basic mathematical operations (multiply, divide, min, max, abs, sqrt)

• String: implements String type and provides string-related operations (new, length, charAt,

setCharAt, appendCHar, eraseLastChar, intValue, setInt, backSpace, doubleQuote, newLine,

dispose)

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 102 of 107

• Array: implements Array type and provides array-related operations (new, dispose)

• Output: handles outputting text to the screen (moveCursor, printChar, printString, printInt,

println, backSpace)

• Screen: handles graphical output to the screen (clearScreen, setColor, drawPixel, drawLine,

drawRectangle, drawCircle)

• Keyboard: handles user input from the keyboard (keyPressed, readChar, readLine, readInt)

• Memory: handles memory operations (peek, poke, alloc, deAlloc)

• Sys: provides execution-related services (halt, error, wait)

Each of these classes are compiled into VM files and then the 8 VM files are included with each

program.

Toolchain
Thus, the complete process from high-level Jack program to a Hack machine code binary that can be

run on the system is summarised below:

1. Compile the Jack program into VM code, one VM file per Class.

2. Translate the VM files (including the 8 OS files) to a single assembly file

3. Assemble the assembly file into a single binary

4. Burn the binary to a ROM cartridge (or load into a simulator)

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 103 of 107

Appendix D: Software optimisations
The first challenge faced during this project was the size of the binaries produced by building Jack

programs. Due to the 15-bit width of the ROM address bus, the maximum program size for the

original Hack architecture is 32768 instructions. Although a 32-bit mode was added to the simulator

to make it possible to run larger programs, initially attempts were made to reduce the size of the

programs by optimising at the VM level. These attempts succeeded in reducing the size of smaller

programs such as “Seven” to a size where they could fit into the original 32K ROM, however larger

programs such as “Pong” still require the use of the 32-bit mode.

Naturally, each successive layer in the build process adds a level of overhead that increases the size

of the produced binaries. Whilst there are surely further optimisations that could be made at the VM

level that would further reduce the size of the binaries, there are also a number of other approaches

worthy of consideration.

One approach that may substantially reduce the size of binaries produced by the build process is to

remove the VM layer entirely and instead compile directly to assembly at the compiler level. This

would necessitate the creation of a much larger and more complex compiler that would need to

handle operations such as memory management itself, but would eliminate much of the overhead

associated with the VM layer and produce tighter binaries. This would also eliminate all of the

benefits associated with a VM layer such as the ease of porting other language compilers to the Hack

platform.

The bulk of the code in a binary produced during the build process consists of OS code. Therefore,

improving the efficiency of the OS code would help in reducing the size of the programs. One

possible approach to this could be to manually rewrite the operating system in optimised assembly.

Replace Halt
Jack programs are terminated by calling an operating system procedure called Halt. Halt simply

enters the system into an endless loop. However, as the Operating System was developed in Jack, an

endless loop compiles down into a large number of assembly instructions, including checking that

condition associated with the while loop still holds. This can be replaced by 3 assembly instructions.

Compared to other optimisations, this does not make much of a difference to the program size,

however, it does make it much easier for the simulator to detect the end of a program which is

useful for measuring performance.

Dead Code Elimination
Dead Code Elimination (DCE) is a classic compiler optimisation technique in which functions that are

never called are detected and removed from the program. Since the OS includes the entire standard

library for the Jack program language, it is very rare for every included function to be called.

Therefore, the removal of this dead code can significantly reduce the size of programs, especially

when only a few of the OS functions are utilised. This optimisation builds an index of where

functions start and end as well as if they are called or not. Once the index is complete, the functions

that are not called are removed from the program. This optimisation is called repeatedly until no

further functions are removed.

Increments
When a Jack program increments or decrements a variable by 1, a large number of instructions are

produced, including pushing 1 onto the stack and then loading it into the D register. The Hack

platform includes instructions to directly increment or decrement a register by 1. This optimisation

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 104 of 107

uses a regular expression to search the program for the assembly produced by incrementing by one

and then replaces these instructions with a tighter implementation that takes advantage of the

increment/decrement assembly instructions.

Two Stage Increment
This optimisation looks for increments that occur across two instructions, when they can be

combined into one. For example:

D=M

D=D+1

Can be optimised to:

D=M+1

Loading 0 or 1 into A
The Hack platform is able to use the ALU to set the value of a register directly to 0 or 1. However,

programs produced by the VM translator layer will often load 0 or 1 into the A register and then

perform arithmetic using the A register. For example:

@1

D=D+A

Can be optimised to:

D=D+1

Redundant A instructions
This optimisation looks for cases where a value that has already been loaded into the A register, is

redundantly loaded again. This can be detected by looking for cases where an A instruction is

repeated, with no code in between the first and second instances of the A instruction that changes

the value of the A register. The repeated A instruction can simply be deleted.

Results
Figure 109 shows the number of static instructions when translated without any VM-level

optimisations compared with using all 5 VM translator optimisations on each of the benchmarks.

This graph shows a clear reduction in the number of instructions for every benchmark. Figure 110

shows the average effect of each of the 5 optimisations individually across all the benchmarks. Dead

code elimination removes the most code and would have the biggest effect on programs that do not

use many operating system functions. Both these graphs show that the VM-level optimisations have

a substantial effect on executable size, around 25%.

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 105 of 107

Figure 109 Static instructions per benchmark comparison between optimised and unoptimised code

Figure 110 Comparison of VM optimisation effect on average static instructions

0

10000

20000

30000

40000

50000

60000
St

at
ic

 In
st

ru
ct

io
n

s

Benchmark

Unoptimised Optimised

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Unoptimised

DCE

Increments

Two stage increment

Plus 0 or 1

Redundant A

All

Average Static Instructions across all benchmarks

V
M

 o
p

ti
m

is
at

io
n

Comparison of VM optimisation effect on average static
instructions

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 106 of 107

Appendix E: Ethics Assessment Form

CS5099: Dissertation in Computer Science University of St Andrews 2021-22

Jamie Munro 210027910 107 of 107

