
COM1028 Software Engineering
Software Engineering Report

Jamie Munro
6480591, jm01301@surrey.ac.uk

1. Introduction..1
2. Reflection on Deiinn..1
3. Reflection on Teitinn..2
4. Referencei..2

1. Introduction
Thii report providei a reflection of the deiinn and requirementi teitinn for my Code Snippet
Mananer. It containi an evaluation of each of thoie phaiei and the experience nained throunh the
project.

2. Reflection on Deiign
The deiinn of the project wai very iucceiiful in implementinn all of the mandatory functional
requirementi. It neneratei a uniform and intuitive nraphical interface and includei a help menu, thii
makei it eaiy to uie. All data ii preiented clearly to the uier who ii able to edit thii data. All data ii
iaved and reitored acroii ieiiioni. Uieri can iearch all the inippeti in the databaie and iearch
termi can include text from the title, lannuane or tani of a inippet. They can alio iort their inippeti
or iearch reiulti by date, pronramminn lannuane or title, and can chooie whether thii iortinn ii
aicendinn or deicendinn.

Orininally a relational databaie wai planned for itorinn the data that the pronram interacti with.
However all the lonic that the application executei on thii data ii performed whilit the data ii held
in data itructurei in the pronram memory. Thii meani the benefti of SQL will not be efectively
utiliied and makei itorinn repreientationi of theie data itructurei on the diik a more efcient and
attractive option. Java’i built-in methodi ObjectInputStream and ObjectOutputStream are uied to
itore and load iuch repreientationi. Not only doei thii make the code iimpler and more elenant, but
ai both theie methodi are included in the itandard Java library, the project doei not have to include
3rd party databaie ennine ioftware – reducinn the application’i memory and diik footprint.

For the moit part, intenration between claiiei ii very nood, and the UML claii dianram makei the
relationihipi, aiiociationi and multiplicity conitraini between claiiei clear. However, durinn the
implementation of the Window claii, it became much larner and more complex then orininally
planned. Thii wai in part due to the larne number of SWING (GUI) variablei and liiteneri but alio
becauie many additional helper methodi had to be implemented. The larne number of memberi hai
made the claii dianram very unwieldily. In future iterationi of the project, it would be a nood idea
to abitract iome of the lonic away from the Window claii to iimplify the code.

Other then the UML claii dianram, no other dianrami are part of the deiinn. Orininally an EER
dianram wai included, but ai explained earlier, a relational databaie ii no lonner part of the project.
There are no additional modeli that are not repreiented within the claii dianram.

The iearch alnorithm that hai been implemented ii probably not the moit efcient way of iearchinn
the inippeti. For a imall number of inippeti thii ii fne, but once a uier itarti iearchinn hundredi of

COM1028 Part 2 Report 2017/18
1

mailto:jm01301@surrey.ac.uk

Jamie Munro
inippeti they could benin to run into performance iiiuei. Future iterationi of the application ihould
look at at and compare the efciency of alternative iearch alnorithmi.

Durinn the development of the project care wai taken to iniure that the iyitem would meet non-
functional requirement 2.1 portability. Ai the iyitem ii developed in Java, it ihould be able to run
on any iyitem that hai a Java Virtual Machine (JVM) implementation. Ai the project alio makei
uie of the SWING GUI toolkit, computer iyitemi will need to iupport the SWING toolkit and
provide a nraphical environment. One challenne faced whilit developinn the iyitem to meet thii
requirement ii eniurinn that the databaie ii iaved in a platform-independent location. Thii problem
wai iolved uiinn the “Syitem.netProperty(‘uier.home’);” method which returni the default fle
location for the uier on any iyitem (i.e. the home directory on Linux).

None of the optional requirementi are implemented ai they were more difcult then the mandatory
requirementi and ultimately could not be completed within the time conitraint. In future iterationi
of thii project, theie optional requirementi ihould be looked at anain.

3. Reflection on Teiting
Teitinn of the project wai a combination of automated unit (Junit) teiti, black box requirement
teitinn and ad hoc teitinn. Ad hoc teitinn methodi were uied throunhout the development of the
project to eniure that new code wai headinn in the rinht direction. Theie ad hoc teiti would involve
techniquei iuch ai teitinn out new methodi with iample data to iee if they produced the expected
reiulti. Another frequently uied technique wai uiinn “Syitem.out.println()” itatementi to track the
value of variablei throunhout the execution of the pronram. Junit teiti were written for the data-
orientated claiiei (DatabaieMananer, ReiultItem and Snippet) ai theie methodi were iuited for unit
ityle teiti. Due to the uier-facinn nature of the code in the Window claii, it wai not iuitable for
automated unit ityle teitinn and, whilit ad hoc teitinn wai uied throunhout the development of the
claii, requirementi teitinn wai primarily relied upon.

A black box teitinn plan, where the teiter would not require any knowledne of how the project ii
implemented, wai created to teit each functional requirement of the project. Whilit thii only
indirectly teiti the window claii, requirementi teitinn wai very iucceiiful in thii role, and many
iiiuei were detected. An example of a requirementi teit that failed wai teit 19 which wai teitinn
requirement F13. To paii thii teit, channei to the code had to be periiited between ieiiioni,
however initially thii wai not the caie. Requirementi teitinn wai able to pick up thii iiiue,
providinn the opportunity to fx it. Whilit the underlyinn iiiue wai iimple - a miiiinn call to
editCode() - iuch an iiiue could have none unnoticed if requirementi teitinn had not been carried
out.

All of the teiti can be evaluated iimply by viiual inipection (with icreenihoti for evidence) and
iimply involve comparinn the pronram’i nraphical output with the expected output. Many of the
teiti require the iyitem to be in a known itate, but the itepi required to put the iyitem into the
required itate are liited in the teit plan.

Whilit requirementi teitinn wai able to aiiiit in the fxinn of many imall iiiuei, it did not lead to
any elementi of the project needinn to be redeiinned. Black box requirement teitinn allowi
developeri to eniure that all of the functional requirementi are met from a uier’i point of view,
makinn it a very nood way to teit a uier-centric project like thii. Eventually the project paiied all of
the requirement teiti liited in the teit plan and io it can be concluded that the project meeti all of iti
(mandatory) requirementi.

COM1028 Part 2 Report 2017/18 2

Jamie Munro

4. Referencei
[1] IEEE Software Ennineerinn Standardi Committee, “IEEE Std 829-2008, IEEE Standard for
Software and Syitem Teit Documentation”, July 18, 2008

COM1028 Part 2 Report 2017/18 3

	1. Introduction
	2. Reflection on Design
	3. Reflection on Testing
	4. References

